TABLE OF CONTENTS

WHAT'S NEW? ... 5
- VFR CHARTS ... 5
- IFR ENROUTE CHARTS ... 5
- TERMINAL PROCEDURE PUBLICATION (TPP) 5

INTRODUCTION .. 7
- KEEP YOUR CHARTS CURRENT 7
- EFFECTIVE DATE OF CHART USERS' GUIDE AND UPDATES .. 7
- COLOR VARIATION ... 7
- REPORTING CHART DISCREPANCIES 7

U.S. TERMINAL PROCEDURES PUBLICATION 9
- EXPLANATION OF TPP TERMS AND SYMBOLS 9
- INSTRUMENT APPROACH PROCEDURE CHART 10
- PLANVIEW ... 16
- MISSED APPROACH INFORMATION 26
- PROFILE VIEW .. 27
- LANDING MINIMUMS .. 30
- AIRPORT SKETCH .. 33
- AIRPORT DIAGRAMS .. 34
- DEPARTURE PROCEDURES (DPs) 36
- STANDARD TERMINAL ARRIVAL (STARs) CHARTS 37
- CHARTED VISUAL FLIGHT PROCEDURE (CVFP) CHARTS .. 37

U.S. TERMINAL PROCEDURES PUBLICATION SYMBOLS 39
- GENERAL INFORMATION ... 39
- PLANVIEW SYMBOLS ... 39
- PROFILE VIEW .. 41
- STANDARD TERMINAL ARRIVAL (STAR) CHARTS 42
- DEPARTURE PROCEDURE (DP) CHARTS 43
- AIRPORT DIAGRAM/AIRPORT SKETCH 44
- APPROACH LIGHTING SYSTEM 45

REFERENCES .. 47

ABBREVIATIONS .. 49
WHAT’S NEW?
Update as of 14 July 2022

The following charting items have been added to the Chart Users’ Guide since the Guide was last published on 19 May 2022:

VFR CHARTS

No Significant Changes Applied

IFR ENROUTE CHARTS

No Significant Changes Applied

TERMINAL PROCEDURE PUBLICATION (TPP)

The IFR Alternate Airport Minimums introductory text has been updated and a new table is provided.

INSTRUMENT APPROACH PROCEDURE CHARTS

IFR ALTERNATE AIRPORT MINIMUMS

Pilots must review the IFR Alternate Minimums Notes to determine alternate airport suitability. A designation on the approach chart means that pilots may not use that approach as an alternate due to unmonitored facility, absence of weather reporting service, or lack of adequate navigation coverage. Approaches with the A designation are not listed in this section. A designation on the approach chart indicates that the approach procedure has non-standard minimums (for aircraft other than helicopters) or restrictions (for all users) for its use as an alternate.

<table>
<thead>
<tr>
<th>Alternate Minima (ref: 14 CFR 91.169)</th>
<th>Precision Approach</th>
<th>Non-Precision Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>600-2</td>
<td>800-2</td>
</tr>
<tr>
<td>Non-Standard or restrictions</td>
<td>As indicated below</td>
<td>As indicated below</td>
</tr>
<tr>
<td>Helicopters</td>
<td>For the selected approach: Ceiling: 200’ above published ceiling Visibility: the greater of 1 SM visibility or the published visibility</td>
<td></td>
</tr>
<tr>
<td>US Military (USA/USN/USAF)</td>
<td>See Service Regulations</td>
<td></td>
</tr>
</tbody>
</table>

Note: For alternate airport flight planning purposes, precision approach operations include: ILS, PAR, and GLS, and Non-Precision approach operations include: NDB, VOR, LOC, TACAN, LDA, SDF, ASR, RNAV (GPS) and RNAV (RNP).
This Chart Users’ Guide is an introduction to the Federal Aviation Administration’s (FAA) aeronautical charts and publications. It is useful to new pilots as a learning aid, and to experienced pilots as a quick reference guide.

The FAA is the source for all data and information utilized in the publishing of aeronautical charts through authorized publishers for each stage of Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) air navigation including training, planning, and departures, enroute (for low and high altitudes), approaches, and taxiing charts. Digital charts are available online at:

- [VFR Charts](#)
- [IFR Charts](#)
- [Terminal Procedures Publication](#)
- [Chart Supplements](#)

Paper copies of the charts are available through an FAA Approved Print Provider. A complete list of current providers is available at http://www.faa.gov/air_traffic/flight_info/aeronav/print_providers/.

The FAA Aeronautical Information Manual (AIM) Pilot/Controller Glossary defines in detail, all terms and abbreviations used throughout this publication. Unless otherwise indicated, miles are nautical miles (NM), altitudes indicate feet above Mean Sea Level (MSL), and times used are Coordinated Universal Time (UTC).

Notices to Air Missions (NOTAMs) alert pilots to time-critical aeronautical information that is either temporary or not sufficiently known in advance to permit publication on aeronautical charts or in other operational publications. Pilots can access NOTAM information via Flight Service Stations (FSS) or online via NOTAM Search at https://notams.aim.faa.gov/notamSearch/.

In addition to NOTAMs, the Safety Alerts/Charting Notices page of the Aeronautical Information Services website is also useful to pilots.

KEEP YOUR CHARTS CURRENT

Aeronautical information changes rapidly, so it is important that pilots check the effective dates on each aeronautical chart and publication. To avoid danger, it is important to always use current editions and discard obsolete charts and publications.

To confirm that a chart or publication is current, refer to the next scheduled edition date printed on the cover. Pilots should also check NOTAMs for important updates between chart and publication cycles that are essential for safe flight.

EFFECTIVE DATE OF CHART USERS’ GUIDE AND UPDATES

All information in this guide is effective as of **14 July 2022**. All graphics used in this guide are for educational purposes. Chart symbology may not be to scale. Please do not use them for flight navigation.

The Chart Users’ Guide is updated when there is new chart symbology or when there are changes in the depiction of information and/or symbols on the charts. It will be published in accordance with the 56-day aeronautical chart product schedule.

COLOR VARIATION

Although the digital files are compiled in accordance with charting specifications, the final product may vary slightly in appearance due to differences in printing techniques/processes and/or digital display techniques.

REPORTING CHART DISCREPANCIES

Your experience as a pilot is valuable and your feedback is important. We make every effort to display accurate information on all FAA charts and publications, so we appreciate your input. Please notify us concerning any requests for changes, or potential discrepancies you see while using our charts and related products.

FAA, Aeronautical Information Services

1305 East-West Highway
SSMC4, Room 3424
Silver Spring, MD 20910-3281

Telephone Toll-Free 1-800-638-8972
Aeronautical Inquires: https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/Aeronautical_Inquiries/
U.S. TERMINAL PROCEDURES PUBLICATION

The U.S. Terminal Procedures Publication (TPPs) includes the Instrument Approach Procedures (IAPs), Departure Procedures (DPs) charts, Standard Terminal Arrival (STAR) charts, Charted Visual Flight Procedure (CVFP) charts, and Airport Diagrams. Also included are Takeoff Minimums, (Obstacle) Departure Procedures, Diverse Vector Area (RADAR Vectors), RADAR and Alternate Minimum textual procedures.

EXPLANATION OF TPP TERMS AND SYMBOLS

The information and examples in this section are based primarily on the IFR (Instrument Flight Rules) Terminal Procedures Publication (TPP). The publication legends list aeronautical symbols with a brief description of what each symbol depicts. This section will provide more detailed information of some of the symbols and how they are used on TPP charts.

FAA Terminal charts are prepared in accordance with specifications of the Interagency Air Committee (IAC) and their supporting technical groups for the purpose of standardization, which are approved by representatives of the Federal Aviation Administration (FAA), and the Department of Defense (DoD).

The Terminal Procedure Publication is made up of the following charts:

- Instrument Approach Procedure (IAP) Charts
- Airport Diagrams
- Departure Procedures (DP)
- Standard Terminal Arrival (STAR) Charts
- Charted Visual Flight Procedure (CVFP) Charts
The margin identification at the top, bottom, and sides of the chart provides information about the airport location, procedure identification, and chart currency. The charts are organized by city first, then airport name and state, with the exception of military charts, which are organized by airport name. Going from the top of the chart, reading from left to right, and going down the chart, Margin Identification Information is organized in the following way.

The hash marks along the top and bottom borders of military Instrument Approach Charts indicate that the procedure was designed using High Altitude criteria contained in FAA Order 8260.3. These procedures are designed to support high performance military aircraft operations and are not intended for civilian use.
Top Margin Information:

The city and state with which the airport is associated is located on both the top and bottom margins.

At the center of the top margin is the FAA numbering system. This Approach and Landing (AL) number is followed by the organization responsible for the procedure in parentheses, e.g., AL-18 (FAA), AL-227 (USAF).

The procedure title is located on both the top and bottom margins. It is derived from the type of navigational facility that is providing the final approach course guidance. The title is abbreviated, e.g. ILS, RNAV, NDB, etc. For airports with parallel runways and simultaneous approach procedures, “L”, “R” or “C” follows the runway number to distinguish between left, right, and center runways.

The airport name is shown on both the top and bottom margins below the procedure title. The airport identifier is shown in parentheses following the airport name. Airports outside the contiguous United States will be shown with the FAA designated identifier followed by the ICAO location identifier.

The Date of Latest Revision is shown on the top margin above the procedure title. The Date of Latest Revision identifies the Julian date the chart was last revised for any reason. The first two digits indicate the year, the last three digits indicate the day of the year (001 to 365/6).

Side Margin Information:

The side margins show the volume identification, i.e. SW-3, followed by the current issue date and the next issue date, e.g. SW-3, 21 JUL 2016 to 15 SEP 2016.

Bottom Margin Information:

The FAA Procedure Amendment Number, located on the left bottom margin below the City, State, represents the most current amendment of a given procedure. The Procedure Amendment Effective Date represents the AIRAC cycle date on which the procedure amendment was incorporated into the chart. Updates to the amendment number and effective date represent procedural/criteria revisions to the charted procedure, e.g., course, fix, altitude, minima, etc.

Example: Original Procedure Date

Example: Amendment Procedure Date
The coordinates for the airport reference point are located at the center of the bottom margin.

BRIEFING STRIP INFORMATION

At the top of every TPP is the Briefing Strip which consists of three stacked strips of information immediately above the planview. Information varies depending upon the type of procedure.

Top Briefing Strip

The top briefing strip contains procedural information in three separate boxes, in the following sequence from left to right:

1. **NAVAID Info**
2. **APP CRS**
3. **Rwy Ldg TDZE Apt Elev**

- **Box 1: Primary Procedure Navigation Information**: The primary navigation type (VOR, LOC, NDB, RNAV, etc.) with its identifier and frequency/channel. If applicable, WAAS, the WAAS Channel Number, and the WAAS Reference Path indicator are shown stacked top to bottom. If the primary navigation type is GBAS, then the following information is shown, stacked top to bottom: GBAS, CH NNNN, RPI XXXX. If there is not a primary Navigation Box required, the first box is removed.

- **Box 2: Final Approach Course Information**: The inbound Approach Course (APP CRS) is shown.

- **Box 3: Runway Landing Information**: Stacked top to bottom, the runway landing distance (Rwy Ldg), the Touchdown Zone Elevation (TDZE), and the Airport Elevation (Apt Elev) are shown. Rwy Ldg may not reflect full runway length due to displaced thresholds and shorter declared distances.

Top Briefing Strip Examples:

Ground based NAVAID:

DENVER, COLORADO

<table>
<thead>
<tr>
<th>LOC/DME</th>
<th>i-DZG</th>
<th>APP CRS</th>
<th>Rwy Ldg</th>
<th>TDZE</th>
<th>Apt Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>111.55</td>
<td>52 (Y)</td>
<td>082°</td>
<td>12000</td>
<td>5352</td>
<td>5434</td>
</tr>
</tbody>
</table>

** RNAV-WAAS:**

DENVER, COLORADO

<table>
<thead>
<tr>
<th>WAAS CH</th>
<th>APP CRS</th>
<th>Rwy Ldg</th>
<th>TDZE</th>
<th>Apt Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>82628 W16B</td>
<td>173°</td>
<td>16000</td>
<td>5326</td>
<td>5434</td>
</tr>
</tbody>
</table>

GBAS:

NEWARK, NEW JERSEY

<table>
<thead>
<tr>
<th>GBAS CH</th>
<th>APP CRS</th>
<th>Rwy Ldg</th>
<th>TDZE</th>
<th>Apt Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>22727 G04A</td>
<td>039°</td>
<td>8460</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>
No Primary NAVAID box:

DENVER, COLORADO

<table>
<thead>
<tr>
<th>APP CRS</th>
<th>Rwy Idg</th>
<th>TDZE</th>
<th>Apt Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>173°</td>
<td>12000</td>
<td>5339</td>
<td>5434</td>
</tr>
</tbody>
</table>

RNAV (RNP) Z RWY 17L
DENVER INTL (DEN)

16147

Circling Approach:

ROANOKE, VIRGINIA

<table>
<thead>
<tr>
<th>VOR ODR</th>
<th>APP CRS</th>
<th>Rwy Idg</th>
<th>TDZE</th>
<th>Apt Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.9</td>
<td>236°</td>
<td>N/A</td>
<td>N/A</td>
<td>1175</td>
</tr>
</tbody>
</table>

AL-349 (FAA)

VOR/DME-A
ROANOKE-BLACKSBURG RGNL/WOODRUM FLD (ROA)

16203

Sidestep Procedure:

LOS ANGELES, CALIFORNIA

<table>
<thead>
<tr>
<th>LOC/DME I-OSS</th>
<th>APP CRS</th>
<th>Rwy Idg</th>
<th>24R</th>
<th>24L</th>
</tr>
</thead>
<tbody>
<tr>
<td>108.5, Chan 22</td>
<td>251°</td>
<td>8925</td>
<td>9483</td>
<td></td>
</tr>
</tbody>
</table>

AL-237 (FAA)

ILS or LOC RWY 24R
LOS ANGELES INTL (LAX)

16315

Middle Briefing Strip

The middle briefing strip may contain information in up to three separate boxes, when available, in the following sequence from left to right:

1. NOTES BOX
2. APPROACH LIGHTING SYSTEM
3. MISSED APPROACH PROCEDURE TEXT BOX

- **Box 1: Notes Box**: contains procedure notes, Equipment/Requirements Notes box and Takeoff, Alternate, RA- DAR, WAAS, and/or Cold Weather indicators (details provided below under Notes Box).

- **Box 2: Approach Lighting System Box (when applicable)**: shows the approach lighting system name and charting icon. Multiple approach lighting systems may be shown for approaches that have straight-in minimums for parallel runways.

- **Box 3: Missed Approach Procedure Text Box**: The full textual description of the missed approach procedure is provided here.

Notes Box

Procedure Equipment Requirements Notes Box

Performance-Based Navigation (PBN) Requirements and ground-based Equipment Requirements are displayed in separate, standardized notes boxes. For procedures with PBN elements, the PBN box contains the procedure’s navigation specification(s). If required, specific sensors or infrastructure needed for the navigation solution, additional or advanced functional requirements, and the minimum Required Navigation Performance (RNP) value and any amplifying remarks will also be included. Items listed in this PBN box are REQUIRED. The separate Equipment Requirements Box will list ground-based equipment requirements.

RADAR required for procedure entry.

Simultaneous approach authorized with Rwy 21L.
RVR 1800 authorized with use of FD or AP or HUD to D. A.
On procedures with both PBN elements and ground-based equipment requirements, the PBN requirements box is listed first.

<table>
<thead>
<tr>
<th>PBN Requirements Box</th>
<th>Equipment Requirements Box</th>
<th>Standard Procedure Notes Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>From WINRZ, UBCE, RNAV-1 GPS, RNAV-2 GPS from MAP to YARKU.</td>
<td>DME required for IOC only.</td>
<td>Circling to Rwy 25 NA at night.</td>
</tr>
<tr>
<td>#For non MALSR increase 5-ILS 16R all ops visibility to 2½ SM.</td>
<td>Non-standard IFR alternate minimums exist. Refer to IFR Alternate Airport Minimums section of the TPP.</td>
<td>The IAP may not be used as an alternate due to unmonitored facility, absence of weather reporting service, or lack of adequate navigation coverage. IAPs designated with this symbol are not listed in the IFR Alternate Minimums section of the TPP.</td>
</tr>
</tbody>
</table>

Notes Symbols

Several different symbols may appear within the Notes Box:

- **T** An entry is published in the Takeoff Minimums, (Obstacle) Departure Procedures, and Diverse Vector Area (Radar Vectors) section of the TPP.

- **A** Non-standard IFR alternate minimums exist. Refer to IFR Alternate Airport Minimums section of the TPP.

- **NA** The IAP may not be used as an alternate due to unmonitored facility, absence of weather reporting service, or lack of adequate navigation coverage. IAPs designated with this symbol are not listed in the IFR Alternate Minimums section of the TPP.

- **W** WAAS (Wide Area Augmentation System)

- **-12°C** Cold Temperature Airport

The negative W within a black square box symbol shown in the Notes section below any “A” or “T” Symbol indicates that outages of the WAAS (Wide Area Augmentation System) vertical guidance may occur daily at this location due to initial system limitations. WAAS NOTAMs for vertical outages are not provided for this approach. Use LNAV minima for flight planning at these locations, whether as a destination or alternate. For flight operations at these locations, when the WAAS avionics indicate that LNAV/VNAV or LPV service is available, then vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the procedure, reversion to LNAV minima may be required.

When **-12°C** appears in the Notes section below all other symbols it indicates a cold temperature altitude correction is required at that airport when the reported temperature is at or below the published temperature. Advise ATC with altitude correction. Advising ATC with altitude corrections is not required in the final segment. See Aeronautical Information Manual (AIM), Chapter 7, for guidance and additional information. For a complete list of cold temperature airports, see https://aeronav.faa.gov/d-tpp/Cold_Temp_Airports.pdf.

When “ASR”, “PAR” or “ASR/PAR” appear in the Note section immediately below the “T” and “A” symbols it indicates there are published Radar Instrument Approach Minimums. Where radar is approved for approach control service, it is used not only for radar approaches (Airport Surveillance Radar [ASR] and Precision Approach Radar [PAR]) but is also used to provide vectors in conjunction with published non-radar approaches based on radio NAVAIDs (ILS, VOR, NDB, TACAN). Radar vectors can provide course guidance and expedite traffic to the final approach course of any established IAP or to the traffic pattern for a visual approach.
Bottom Briefing Strip (Communications Information)

The communications briefing strip contains communication information when available, in separate boxes, listed from left to right in the order that they would be used during arrival with the tower frequency box bolded:

<table>
<thead>
<tr>
<th>ATIS</th>
<th>APP CON</th>
<th>TOWER</th>
<th>GND CON</th>
<th>CLNC DEL</th>
<th>UNICOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
</tr>
</tbody>
</table>

- ATIS, AFIS (AK Only) or ASOS/AWOS frequencies (when available, ATIS or AFIS will be the only weather frequency/s published)
- The primary Approach Control (APP CON) name and frequencies; when the primary approach service is provided by other than Approach Control, e.g. FSS (Radio), Tower, Center, the appropriate air traffic facility call name is provided.
- The Control Tower (TOWER) name and frequencies, to include Precision Radar Monitoring (PRM) and frequency
- Ground Control (GND CON) frequencies
- Clearance Delivery (CLNC DEL) frequencies; where a Control Tower does not exist or is part-time, a remoted CLNC DEL may be listed.
- Ground Communications Outlet (GCO) frequency
- Common Traffic Advisory Frequency (CTAF), shown in parentheses when shares a frequency, e.g. UNICOM 122.8 (CTAF)
- UNICOM or AUNICOM frequency
- Controller Pilot Data Link Communication (CPDLC)

Note: Part-time operations will be annotated with a star. Check Chart Supplement for times of operation.

PLANVIEW

The planview of the IAP charts provides an overhead view of the entire instrument approach procedure.

The data on the planview is shown to scale, unless concentric rings, scale breaks or an inset have been used.

Planview Items

- Approach Segments
- NAVAIDs
- Area Navigation (RNAV) Waypoints
- Restrictive Airspeeds
- Restrictive Altitudes
- Holding Patterns and Procedure Turns
- Airports
- Relief (Terrain Features)
- Hydrography
- International Boundary
- Obstacles (Man-made, Terrain and Vegetation)
- Special Use Airspace
- Minimum Safe Altitude
- Terminal Arrival Areas
- Helicopter (Copter) Procedures
Approach Segments

The planview includes a graphical depiction of procedure entry through missed approach.

Simple IAP Example

Legend

- Feeder Route
- Initial Approach
- Intermediate Approach
- Final Approach Course
- Missed Approach
Complex IAP Example with RF Legs

- **Feeder Routes** (highlighted in blue - See Simple IAP Example on previous page) may be used to provide a transition from the enroute structure to the IAF.

- **Initial Approach** (highlighted in purple in examples above) is the segment between the initial approach fix (IAF) and the intermediate fix (IF) or the point where the aircraft is established on the intermediate course or final approach course.

- **Intermediate Approach** (highlighted in yellow in examples above) is the segment between the intermediate fix or point and the final approach fix.

- **Final Approach Course** (highlighted in red in the examples above) is the segment between the final approach fix or point and the runway, airport, or missed approach point.

- **Missed Approach** (highlighted in green in the example above) begins at the MAP and continues until the designated fix or waypoint. Missed Approach Procedure Track is shown as a hash marked line in the planview. If the missed approach fix falls outside of the area of the planview it will be shown in a separate box in the planview.

- **DME arcs or Radius-to-Fix legs (RF)** are shown as smooth arcs from a designated start point to a designated terminus.
• **Visual segment** - Instrument approach procedures, including Copter approach procedures, that terminate or have missed approaches prior to the airport/heliport, and are authorized to proceed visually, will depict the visual flight path by a dashed line symbol from the missed approach point to the airport.

On RNAV charts where the visual track may only apply to a specific line of minima, the visual procedure track line will not be shown in the planview. There will be a note directed to that portion of the procedure track.

NAVAIDs

NAVAIDs used on ground based charts will show the appropriate symbol accompanied by a data box that contains the facility name, frequency, identifier and Morse code. A NAVAID box with a heavy line indicates the primary NAVAID used for the approach.
NAVAIDs used on GPS based charts show the appropriate symbol identified with the name and identifier.

Area Navigation (RNAV) Waypoints

Waypoints are shown with the waypoint symbol accompanied by the five letter identifier. If an RNAV waypoint is collocated with an intersection, DME fix, or NAVAID, the appropriate Intersection, DME fix, or NAVAID symbol will be charted.

On RNAV (RNP) charts, any requirement/capability notes are depicted below the fix/waypoint/NAVAID name. When the required RNP lateral accuracy value for any approach segment other than final approach (e.g. feeder, initial and/or intermediate or missed) are less than standard (RNP 2.00 for feeder, RNP 1.00 for initial and/or intermediate and missed), a note stating the required RNP value may be placed adjacent to the applicable fix at the beginning of the Feeder Route (or annotated in the PBN box). If there is more than one lateral accuracy value within these portions of the procedure, the lowest value is annotated. These notes will take the form "RNP 0.XX, or Min RNP 0.XX" and will be located in close proximity to the relevant fix name (or be identified in the PBN Box).
Localizer Depiction

The localizer is depicted in the Planview using the following symbol. The size of the charted localizer symbol does not serve as an indication of the service volume.

![Localizer (LOC/LDA) Course](image)

Restrictive Airspeeds Along the Procedure Track

Restrictive airspeeds along the procedure track are shown paired with their respective fix/facility.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Speed</td>
<td>Recommended speed is depicted with no lines above or below it</td>
<td>180K</td>
</tr>
<tr>
<td>Minimum Speed</td>
<td>Minimum speed is depicted as a number with a line below it</td>
<td>120K</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>Maximum speed is depicted as a number with a line above it</td>
<td>250K</td>
</tr>
<tr>
<td>Mandatory Speed</td>
<td>Mandatory speed is depicted as a number with a line above and below it</td>
<td>175K</td>
</tr>
</tbody>
</table>

Altitudes

Restrictive altitudes along the procedure track are shown paired with their respective fix/facility. Minimum, Maximum, Mandatory and Recommended Altitudes are shown.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Altitude</td>
<td>Recommended altitude is depicted with no lines above or below it</td>
<td>3000</td>
</tr>
<tr>
<td>Minimum Altitude</td>
<td>Minimum altitude is depicted as a number with a line below it</td>
<td>2500</td>
</tr>
<tr>
<td>Maximum Altitude</td>
<td>Maximum altitude is depicted as a number with a line above it</td>
<td>4300</td>
</tr>
<tr>
<td>Mandatory Altitude</td>
<td>Mandatory altitude is depicted as a number with a line above and below it</td>
<td>5500</td>
</tr>
<tr>
<td>Mandatory Block Altitude</td>
<td>Mandatory block altitude is depicted with a minimum and a maximum altitude.</td>
<td>5000 3000</td>
</tr>
</tbody>
</table>

Altitudes that are shown along a route are minimum altitudes.

![Minimum Route Altitude](image)

Holding Patterns and Procedure Turns

Holding Patterns are used for many reasons, including deteriorating weather or high traffic volume. Holding might also be required following a missed approach. Each holding pattern has a fix, a direction to hold from the fix, and an airway, bearing, course, radial, or route on which the aircraft is to hold. These elements, along with the direction of the turns, define the holding pattern. Holding Patterns may not always be depicted to scale.

![Missed Approach](image)
![Hold In-Lieu of Procedure Turn](image)
![Arrival](image)

If a holding pattern has a non-standard speed restriction, it will be depicted by an icon with the limiting air speed shown inside the holding pattern symbol. These elements, along with the direction of the turns, define the holding pattern. If two types of holds are located at the same point, the procedural holding pattern will be shown in-lieu of arrival or missed approach holding patterns. Timing or distance limits for Hold-in-lieu of Procedure Turn Holding Patterns will be shown.
Waypoints designated as a holding fix are shown as fly-by, without the circle around the symbol. However, in the event the holding fix/waypoint is also designated in some other part of the procedure (i.e., IAF) with a fly-over function, then the holding fix/waypoint will be charted as a fly-over point.

A procedure turn (PT) is the maneuver prescribed to perform a course reversal to establish the aircraft inbound on an intermediate or final approach course. The procedure turn or hold-in-lieu-of procedure turn is a required maneuver when it is depicted on the approach chart. However, the procedure turn or the hold-in-lieu-of PT is not permitted when the symbol “NoPT” is depicted on the initial segment being flown, when a RADAR VECTOR to the final approach course is provided, or when conducting a timed approach from a holding fix. The procedure turn will be shown in the planview and in the profile of the chart. In the planview, the tip of the procedure turn barb is shown at the procedure turn limit, e.g., 10 NM, 15 NM. Users should be aware that it is possible for there to be a terminal/feeder fix along the procedure track that is not associated with the procedure turn. Fixes associated with the procedure turn are depicted in the profile.

Airports

The primary approach airport is shown to scale by a pattern of all the runways. Airports other than the primary approach airport may be shown with an airport pattern and name when in close proximity to the primary airport.

Relief (Terrain Features)

Terrain is depicted in the planview portion of all IAPs at airports that meet the following criteria:

- If the terrain within the planview exceeds 4,000 feet above the airport elevation, or
- If the terrain within a 6.0 nautical mile radius of the Airport Reference Point (ARP) rises to at least 2,000 feet above the airport elevation.

When an airport meets either of the above criteria, terrain will be charted by use of contours, spot elevations, and gradient tints of brown on all IAPs for that airport. Contour layers will be shown in no more than five brown tints, with consecutively darker tints used for consecutively higher elevation contour layers.
Hydrography (Water)

Water Depiction is depicted in grey, in the planview portion of IAPs. See previous example. The following hydrographic features are shown:

- Oceans
- Significant rivers and streams
- Significant lakes - If only one river or one small lake is involved, not located in the immediate airport vicinity, the hydrographic information requirement may be waived.

International Boundary

When the planview includes a boundary of another country the International boundaries are shown by a dashed line. International boundaries are identified with country name within the country area.

Obstacles (Man-made, Terrain and Vegetation)

Obstacles are shown as ▲ when they are man-made or vegetation or as a ● when they are terrain. The highest obstacle, whether man-made or terrain is depicted with a bolder and larger symbol along with larger elevation font size. Any obstacle which penetrates a slope of 67:1 emanating from any point along the centerline of any runway shall be considered for charting within the area shown to scale. Obstacles specifically identified by the approving authority for charting shall be charted regardless of the 67:1 requirement.

Unverified obstacles shall be indicated by a doubtful accuracy symbol ± following the elevation value.

On non-precision approaches, obstacles should be considered when determining where to begin descent from the MDA.
Special Use Airspace (SUA)

SUAs consists of that airspace wherein activities must be confined because of their nature, or wherein limitations are imposed upon aircraft operations that are not a part of those activities, or both. These are prohibited areas, restricted areas, warning areas, Military Operations Areas (MOAs), and alert areas. SUA that falls within the area of coverage of the instrument approach procedure chart are shown only when designated by the approving authority.

Air Defense Identification Zone (ADIZ)

ADIZ is an area of airspace in which the identification, location, and control of aircraft is required in the interest of national security. When designated by the approving authority, ADIZ boundaries that fall within the area of coverage of the chart are shown.

Minimum Safe Altitude (MSA)

MSAs are published for emergency use on IAP charts. MSAs appear in the planview of all IAPs except on approaches for which a Terminal Arrival Area (TAA) is used. The MSA is based on the primary NAVAID, waypoint, or airport reference point on which the IAP is predicated. The MSA depiction on the approach chart contains the identifier of the NAVAID/waypoint/airport used to determine the MSA altitudes. MSAs are expressed in feet above mean sea level and normally have a 25 NM radius; however, this radius may be expanded to 30 NM if necessary to encompass the airport landing surfaces. Ideally, a single sector altitude is established and depicted on the planview of approach charts; however, when necessary to obtain relief from obstructions, the area may be further sectored and as many as four MSAs established. When established, sectors may be no less than 90° in spread. MSAs provide 1,000 feet clearance over all obstructions but do not necessarily assure acceptable navigation signal coverage.

Terminal Arrival Areas (TAAs)

The TAA icons will be positioned in the planview relative to their relationship to the procedure. The icon will not have feeder routes, airways, or radar vectors depicted. The TAA provides a transition from the enroute structure to the terminal environment with little required pilot/air traffic control interface for aircraft equipped with Area Navigation (RNAV) systems. A standard TAA has three areas: straight-in, left base, and right base. The arc boundaries of the three areas of the TAA are published portions of the approach. A TAA provides minimum altitudes with standard obstacle clearance when operating within the TAA boundaries. TAAs are primarily used on RNAV approaches but may be used on an ILS approach when RNAV is the sole means for navigation to the IF; however, they are not normally used in areas of heavy concentration of air traffic.
Non-standard TAAs may also be published; i.e., one base leg, no base legs.

Helicopter (Copter) Procedures

Copter procedures may contain either a visual or a VFR segment. Visual segments are depicted using the dashed line symbol below.
VFR Segments are not depicted with a line, but include the reference bearing and distance information at the endpoint of the VFR Segment, when provided, as shown below.

When a visual flight path or VFR segment is required from the MAP to the heliport or alighting area, and as necessary for an explicit portrayal, an inset of the MAP area may be provided. This MAP area will depict significant landmark visual features. The procedure track, value and distance to the MAP and the visual segment and value to the landing point shall be shown within this inset. If it is a VFR segment, the reference bearing and distance text will be shown at the landing point.

MISSED APPROACH INFORMATION

Missed approach information is shown in 3 locations on the chart:

- The Middle Briefing Strip - The complete textual missed approach instructions are provided at the top of the approach chart in the middle pilot briefing strip.
- The Planview - The missed approach track is drawn using a thin, hash marked line with a directional arrow. If the missed approach fix is off the chart, the missed approach track shall extend to the chart border.

Missed Approach

Missed approach holding patterns that lie outside the geographic parameters of the planview and are unable to be shown with a scale break will be shown as a boxed inset. All alternate missed approach holding patterns will be shown in an inset.

- The Profile Box - Missed Approach Icons will be depicted in the upper left or upper right of the profile box. The Missed Approach Icons are intended to provide quick, at a glance intuitive guidance to the pilot, to supplement the textual missed approach instructions in the briefing strip. Space permitting, all textual missed approach instructions will be graphically depicted in sequence. If space does not permit the depiction of all missed approach icons, only the first four icon boxes will be shown.

Example Missed Approach Icons

<table>
<thead>
<tr>
<th>Example Missed Approach Icons</th>
<th>Missed Approach Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MISSED APPROACH: Climb to 13000 on RIL VOR/DME R-250 to TEKGU INT/RIL 19 DME and on EKR VOR/DME R-179 to WOKPA/EKR 44.2 DME and hold, continue climb-in-hold to 13000.</td>
</tr>
<tr>
<td></td>
<td>MISSED APPROACH: Climbing left turn to 8000 via SVC R-128, then reverse course to SVC VOR/DME and hold.</td>
</tr>
<tr>
<td></td>
<td>MISSED APPROACH: Climb to 9000 on track 112° to JETRY, cross JETRY at or above 6700, and on track 112° to PAKPE, right turn to WULKU, and on track 289° to JNC VOR/DME and hold.</td>
</tr>
<tr>
<td></td>
<td>MISSED APPROACH: Climb to 14000 via 174° course to HOMDU and via 160° track to DEVEC and 160° track to FTI VORTAC and hold.</td>
</tr>
<tr>
<td></td>
<td>MISSED APPROACH: Climb to 5800, then climbing left turn to 10000 via heading 190° and SVC VOR/DME R-193 to KUNRE INT/SVC VOR/DME 24.1 DME and hold.</td>
</tr>
</tbody>
</table>

PROFILE VIEW

A profile diagram of the instrument approach procedure is shown below the planview. The published descent profile and graphical depiction of the vertical path using those facilities, intersections, fixes, etc. identified in the procedure to the runway are shown. A profile view of the procedure track is shown. The approach track begins toward the top of the primary facility line, unless otherwise dictated by the procedure, and shall descend to where the final approach ends and the missed approach begins.
On precision approaches, the glideslope (GS) intercept altitude is illustrated by a zigzag line and an altitude. This is the minimum altitude for GS interception after completion of the procedure turn. Precision approach profiles also depict the GS angle of descent, threshold crossing height (TCH), and GS altitude at the outer marker (OM) or designated fix.

Precision Approaches

On precision approaches, the glideslope (GS) intercept altitude is illustrated by a zigzag line and an altitude. This is the minimum altitude for GS interception after completion of the procedure turn. Precision approach profiles also depict the GS angle of descent, threshold crossing height (TCH), and GS altitude at the outer marker (OM) or designated fix.
Non-Precision Approaches

On non-precision approaches, the final segment begins at the Final Approach Fix (FAF) which is identified with the Maltese cross symbol ✶. When no FAF is depicted, the final approach point is the point at which the aircraft is established inbound on the final approach course. Stepdown fixes may also be provided between the FAF and the airport for authorizing a lower minimum descent angle (MDA) and are depicted with the fix or facility name and a dashed line. Altitude restrictions at stepdown fixes on the final approach on procedures with both precision and non-precision minima are not applicable to precision (ILS, LPV, or LNAV/VNAV) use of the approach. On non-precision only approach procedures, the approach track descends to the MDA or VDP point, thence horizontally to the missed approach point.

Visual Decent Point (VDP)

The Visual Descent Point (VDP), is shown by a bold letter "V" positioned above the procedure track and centered on the accompanying dashed line. (See example below.) The VDP is a defined point on the final approach course of a non-precision straight-in approach procedure from which normal descent from the MDA to the runway touchdown point may be commenced.

Vertical Descent Angle (VDA) and Threshold Crossing Heights (TCH)

A VDA and TCH may be published on non-precision approaches. For Copter approach procedures, a Heliport Crossing Height (HCH) will be depicted in place of the TCH. The VDA is strictly advisory and provides a means to establish a stabilized descent to the MDA. The presence of a VDA does not guarantee obstacle protection in the visual segment. If there are obstacles in the visual segment that could cause an aircraft to destabilize the approach between MDA and touchdown, the profile will not show a VDA and will instead show a note that states “Visual Segment-Obstacles”.

FAA Chart Users’ Guide - Terminal Procedures Publication (TPP) - Terms
Visual Flight Path

Instrument approach procedures, including Copter approach procedures, that terminate or have missed approaches prior to the airport, and are authorized to proceed visual, shall depict the visual segment by the dashed line symbol from the missed approach point to the airport. The note “Fly visual” ("Proceed visually" on Copter procedures) along with the bearing and distance shall be shown leadered to the visual flight path.

RNAV charts sometimes have visual flight for LNAV/VNAV minima which do not start at the missed approach point. An additional note indicating “LNAV/VNAV” will be placed above the note.

Copter approach procedures with a VFR segment from the missed approach point will not depict the VFR segment with a line in the profile. The note similar to “Proceed VFR from MAP” will be shown.

Copter VFR Segment

Chart Examples

<table>
<thead>
<tr>
<th>Traditional (NAVAID) Approach</th>
<th>RNAV Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ILS Glide Slope and RNAV Glidepath

A note providing the glide slope (GS) or glidepath (GP) angle and the threshold crossing height (TCH), are positioned in the lower half of the profile box

- GS will be shown on all ILS procedures.
- GP will be shown GLS procedures and all RNAV procedures with a published decision altitude

Threshold Crossing Height (TCH) has been traditionally used in “precision” approaches as the height of the glide slope above threshold. With publication of LNAV/VNAV minimums and RNAV descent angles, including graphically depicted descent profiles, TCH also applies to the height of the “descent angle,” or glidepath, at the threshold.

34:1 Surface Clear Stipple Symbol

On RNAV approach charts, a small shaded arrowhead shaped symbol from the end of the VDA to the runway indicates that the 34:1 Obstacle Clearance Surface (OCS) for the visual segment is clear of obstacles. The absence of the symbol indicates that the 34:1 OCS is not clear or a Visual Segment-Obstacles note is indicated on the chart. (See example in VDP Section.)

LANDING MINIMUMS

The landing minimums section is positioned directly below the profile. This section gives the pilot the lowest altitude and visibility requirements for the approach. There are two types of landing minimums: Straight-in landing or Circling. Straight-in landing minimums are the MDA and visibility, or DA and visibility, required for a straight-in landing on a specified runway. Circling minimums are the MDA and visibility required for the circle-to-land maneuver.
The minimums for straight-in and circling are located under each aircraft category. When there is not a division line between minimums for each category, the minimums apply to two or more categories.

LANDING MINIMA FORMAT

In this example airport elevation is 1179, and runway touchdown zone elevation is 1152.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS 27</td>
<td>1352/24</td>
<td>200</td>
<td>(200-½)</td>
<td></td>
</tr>
<tr>
<td>S-LOC 27</td>
<td>1440/24</td>
<td>288</td>
<td>(300-½)</td>
<td>1440/50</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>1540-1</td>
<td>1640-1</td>
<td>1640-½</td>
<td>1740-2</td>
</tr>
<tr>
<td>MDA HAA</td>
<td>288 (300-1)</td>
<td>461 (500-1)</td>
<td>461 (500-½)</td>
<td>561 (600-2)</td>
</tr>
</tbody>
</table>

COPPER MINIMA ONLY

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>COPPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-176°</td>
<td>680-½</td>
</tr>
<tr>
<td>363</td>
<td>(400-½)</td>
</tr>
</tbody>
</table>

A second category of straight-in minimums called "sidestep" may be depicted where parallel runways exist.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS 24R</td>
<td>320/18</td>
<td>200 (200-½)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-LOC 24R</td>
<td>460/24</td>
<td>340 (400-½)</td>
<td>460/40</td>
<td></td>
</tr>
<tr>
<td>SIDESTEP RWY 24L</td>
<td>580/50</td>
<td>459 (500-1)</td>
<td>580-½</td>
<td></td>
</tr>
<tr>
<td>MDA HAA</td>
<td>340 (400-½)</td>
<td>459 (500-½)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The terms used to describe the minimum approach altitudes differ between precision and nonprecision approaches. Precision approaches use DA and nonprecision approaches use MDA, both expressed in feet MSL. The minimum approach altitudes are also referenced to height above touchdown elevation (HAT) for straight-in approaches, or height above airport (HAA) for circling approaches. The figures listed parenthetically are for military operations and are not used in civil aviation.

The visibility values are shown after the DA or MDA. They are provided in statute miles or runway visual range (RVR). RVR is reported in hundreds of feet. If the visibility is in statute miles, there is an altitude number, hyphen, whole or fractional number, e.g. 530-1. This indicates 530 feet MSL and 1 statute mile of visibility. The RVR value is separated from the minimum altitude with a slash, e.g., 1540/24. This indicates 1540 feet MSL and RVR of 2400 feet. When an RVR value is shown, the comparable statute mile equivalent is shown within the military minimums in parentheses as shown in the examples above. This value is determined from the Comparable Values of RVR and Visibility table located in the TPP Legend.

Comparable Values of RVR and Visibility

The following table shall be used for converting RVR to ground or flight visibility. For converting RVR values that fall between listed values, use the next higher RVR value, do not interpolate. For example, when converting 4800 RVR, use 5000 RVR with the resultant visibility of 1 mile.

<table>
<thead>
<tr>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>½</td>
<td>2400</td>
<td>½</td>
<td>3500</td>
<td>¼</td>
<td>5500</td>
<td>1</td>
</tr>
<tr>
<td>1800</td>
<td>⅓</td>
<td>2600</td>
<td>⅓</td>
<td>4000</td>
<td>⅓</td>
<td>6000</td>
<td>⅓</td>
</tr>
<tr>
<td>2000</td>
<td>⅔</td>
<td>3000</td>
<td>⅔</td>
<td>4500</td>
<td>⅔</td>
<td>6500</td>
<td>⅔</td>
</tr>
<tr>
<td>2200</td>
<td>⅝</td>
<td>3200</td>
<td>⅝</td>
<td>5000</td>
<td>1</td>
<td>7000</td>
<td>1</td>
</tr>
</tbody>
</table>
When a reference mark (*, **, #, etc.) is shown on a line of minimums, the qualifying footnote is provided in the notes section.

Circling Minimums

There was a change to the TERPS criteria in 2012 that affects circling area dimension by expanding the areas to provide improved obstacle protection. To indicate that the new criteria had been applied to a given procedure, a * is placed on the circling line of minimums. The new circling tables and explanatory information is located in the Legend of the TPP.

The approaches using standard circling approach areas can be identified by the absence of the * on the circling line of minima.
AIRPORT SKETCH

The airport sketch is a depiction of the airport with emphasis on runway pattern and related information, positioned in either the lower left or lower right corner of the chart to aid pilot recognition of the airport from the air and to provide some information to aid on ground navigation of the airport. The runways are drawn to scale and oriented to true north. Runway dimensions (length and width) are shown for all active runways.

Runway(s) are depicted based on what type and construction of the runway.

<table>
<thead>
<tr>
<th>Hard Surface</th>
<th>Other Than Hard Surface</th>
<th>Metal Surface</th>
<th>Closed Runway</th>
<th>Under Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

Stopways, Taxiways, Parking Areas

<table>
<thead>
<tr>
<th>Displaced Threshold</th>
<th>Closed Pavement</th>
<th>Water Runway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

Taxiways and aprons are shaded grey. Other runway features that may be shown are runway numbers, runway dimensions, runway slope, arresting gear, and displaced threshold.

Other information concerning lighting, final approach bearings, airport beacon, obstacles, control tower, NAVAIDs, helipads may also be shown.

Airport Elevation and Touchdown Zone Elevation

The airport elevation is shown enclosed within a box in the upper left corner of the sketch box and the touchdown zone elevation (TDZE) is shown in the upper right corner of the sketch box. The airport elevation is the highest point of an airport’s usable runways measured in feet from mean sea level. The TDZE is the highest elevation in the first 3,000 feet of the landing surface. Circling only approaches will not show a TDZE.

RunwayDeclared Distance Information

Runway declared distance information when available will be indicated by D and is shown to the right of the airport elevation in the sketch box. Declared distances for a runway represent the maximum distances available and suitable for meeting takeoff and landing distance performance requirements.

Runway Lights

Notes regarding approach lighting systems are shown at the bottom of the sketch box. Runway lights (HIRL) (MIRL) (LIRL) (TDZL) (TDZ/CL) shall be indicated by a note, e.g. HIRL Rwy 9-27.

Other approach lighting is shown on the airport sketch as a symbol on the side of the runway where they are actually located. Symbols that are shown in negative indicate pilot-controlled lighting.

Runway centerline lights (CL) are installed on some precision approach runways to facilitate landing under adverse visibility conditions. They are located along the runway centerline and are spaced at 50 foot intervals. Runways with CL are shown in a negative dot pattern through the middle of the solid runway as illustrated in the airport sketch to right.

Runway centerline lights will be indicated by a note only when paired with TDZL, e.g., TDZ/CL Rwys 6 and 24.
Time/Distance Table

When applicable, a Time/Distance Table is provided below the airport sketch. The table provides the distance and time that is required from the final approach fix to the missed approach point for select groundspeeds.

Base Information (Copter Approaches Only)

Base Information, as required and necessary to identify the MAP area and in the vicinity of the landing area shall be provided. Information shall be limited to and depict significant visual landmark features at and surrounding the MAP area and the heliport/pad of intended landing.

AIRPORT DIAGRAMS

Airport Diagrams are specifically designed to assist in the movement of ground traffic at locations with complex runway/taxiway configurations. Airport Diagrams are not intended for use in approach and landing or departure operations. An airport diagram assists pilots in identifying their location on the airport, thus reducing requests for "progressive taxi instructions" from controllers.
Airport Diagram Features:

1. Runways
 a. Complete with magnetic headings (including magnetic variation and epoch year) and identifiers.
 b. Runways under construction shall also be shown.
 c. Runway dimensions, displaced thresholds, runway end elevations.
 d. Runway surface composition
 e. Weight bearing capacity (landing gear configuration or Pavement Classification Number)
 f. Land and Hold Short (LAHSO) lines, ILS hold lines, Localizer/Glide Slope Critical Areas.
 g. Arresting Gear. To include Engineered Materials Arresting System (EMAS).

2. Taxiways, with identifiers. Taxiways under construction shall also be shown.

3. Hot Spot locations.

4. Parking areas, run-up pads, alert areas, landing pads, "Non-Movement" areas (where pilot is NOT under air traffic control), ramps, aprons and hold pads.

5. Turnarounds, blast pads, stopways, overruns, and clearways (include dimensions when known).

6. Large tanks, including fueling area.

7. Control towers (include tower height).

8. Airport beacon.

11. Highest obstruction within diagram boundary.

12. Any building that pilot can taxi to. Other buildings to include terminal/administration and Base operations, fire station, NWS, AFSS, FAA, FSDO, ANG, USCG, FBO.

13. Comm Frequencies.

Note: Star when used in the Comm Frequencies indicates part-time status. Check Chart Supplement for times of operation.
Runway Construction

Runway construction is depicted as follows:

<table>
<thead>
<tr>
<th>Hard Surface</th>
<th>Other Than Hard Surface</th>
<th>Metal Surface</th>
<th>Closed Runway</th>
<th>Under Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Hard Surface Icon]</td>
<td>![Other Than Hard Surface Icon]</td>
<td>![Metal Surface Icon]</td>
<td>![Closed Runway Icon]</td>
<td>![Under Construction Icon]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stopways, Taxiways, Parking Areas</th>
<th>Displaced Threshold</th>
<th>Closed Pavement</th>
<th>Water Runway</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Stopways Icon]</td>
<td>![Displaced Threshold Icon]</td>
<td>![Closed Pavement Icon]</td>
<td>![Water Runway Icon]</td>
</tr>
</tbody>
</table>

Hot Spots

Hot Spots (HS) are a runway safety related problem area or intersection on an airport. Typically it is a complex or confusing taxiway/taxiway or taxiway/runway intersection. A confusing condition may be compounded by a miscommunication between a controller and a pilot, and may cause an aircraft separation standard to be compromised. The area may have a history of surface incidents or the potential for surface incidents.

Hot Spots are indicated on the Airport Diagram with a brown open circle or polygon leadered to a Hot Spot number, e.g., HS 1. The number corresponds to a listing and description on the Hot Spot page in the front the TPP. More information and the location of Hot Spots can be found at http://www.faa.gov/airports/runway_safety/hotspots/hotspots_list/.

DEPARTURE PROCEDURES (DPs)

Departure Procedures (DPs) are designed specifically to assist pilots in avoiding obstacles during the climb to the minimum enroute altitude, and/or airports that have civil IFR takeoff minimums other than standard. There are two types of DPs: Obstacle Departure Procedures (ODPs), printed either textually or graphically and Standard Instrument Departures (SIDs), always printed graphically. SIDs are primarily designed for system enhancement and to reduce pilot/controller workload, and require ATC clearance. ODPs provide obstruction clearance via the least onerous route from the terminal area and may be flown without ATC clearance. All DPs provide the pilot with a safe departure from the airport and transition to the enroute structure.

Generally, DP charts are depicted “not to scale” due to the great distances involved on some procedures or route segments. A “to scale” portrayal may be used if readability is assured.

The DP will show the departure routing, including transitions to the appropriate enroute structure. All routes, turns, altitudes, NAVAIDs, facilities forming intersections and fixes, and those facilities terminating the departure route are shown. A textual description of the departure procedure is also provided. For RNAV DPs, the transition text consists of the transition name and associated computer code. On non-RNAV DPs, the transition text will also include the description of all turns, altitudes, radials, bearings and facilities/fixes needed to guide the user from the common departure point to the terminating facility fix.

Copter DPs may also include a visual or VFR segment. Visual segments are depicted using the dashed line symbol below.

![Visual Flight Segment](https://example.com/visual_flight_segment.png)
VFR Segments are not depicted with a line, but include the reference bearing and distance information at the endpoint of the VFR Segment, when provided, as shown below.

Example of Copter with VFR Segment

STANDARD TERMINAL ARRIVAL (STARs) CHARTS

STARs are pre-planned Instrument Flight Rule (IFR) air traffic control arrival procedures for pilot use in graphic and/or textual form. STARs depict prescribed routes to transition the aircraft from the enroute structure to a fix in the terminal area from which an instrument approach can be conducted. STARs reduce pilot/controller workload and air-ground communications, minimizing error potential in delivery and receipt of clearances.

STAR charts generally shall be depicted ‘not to scale’ due to the great distances involved on many procedures and route segments. A ‘to scale’ depiction may be used only if readability is assured.

The STAR will show the arrival routing, including transitions from the appropriate enroute structure. All routes, turns, altitudes, NAVAIDs, facilities forming intersections and fixes, and those facilities/fixes terminating or beginning the arrival route shall be shown in the graphic depiction. A textual description of the arrival procedure is also provided. For RNAV STARs, transition text will consist of the transition name and associated computer code. For non-RNAV STARs, the transition text will also include a description of all turns, altitudes, radials, bearings and facilities/fixes needed to guide the user from the entry point to the common facility/fix.

CHARTED VISUAL FLIGHT PROCEDURE (CVFP) CHARTS

CVFPs are charted visual approaches established for environmental/noise considerations, and/or when necessary for the safety and efficiency of air traffic operations. The approach charts depict prominent landmarks, courses, and recommended altitudes to specific runways. CVFPs are designed to be used primarily for turbojet aircraft. CVFPs are not instrument approaches and do not have missed approach segments.

CVFPs are named for the primary landmark and the specific runway for which the procedure is developed, such as: RIVER VISUAL RWY 18, STADIUM VISUAL RWY 24. The CVFP charts are divided into planview and notes sections separated by a bar scale in 1 NM increments. The planview of the CVFP includes the portrayal of visual approach procedures information, such as landmarks, NAVAIDs, visual track, hydrography, special use airspace and cultural features, as applicable.

CVFPs originate at or near, and are designed around, prominent visual landmarks and typically do not extend beyond 15 flight path miles from the landing runway. Visual tracks start at a geographical point or landmark where the procedure must be flown visually to the airport. The visual track is indicated by a dashed line. Visual tracks may include the track value, distance and minimum or recommended altitudes.
U.S. TERMINAL PROCEDURES PUBLICATION SYMBOLS

GENERAL INFORMATION

Symbols shown are for the Terminal Procedures Publication (TPP) which includes Standard Terminal Arrival (STARs) Charts, Departure Procedures (DPs), Instrument Approach Procedures (IAP) and Airport Diagrams.

PLANVIEW SYMBOLS

LEGEND 22139

INSTRUMENT APPROACH PROCEDURES (CHARTS)

PLANVIEW SYMBOLS

TERMINAL ROUTES

- Procedure Track
- Missed Approach
- Visual Flight Path

ALTITUDES

- 5500 Mandatory Altitude
- 3000 Recommended Altitude
- 2500 Minimum Altitude
- 2000 Mandatory Block
- 4000 Maximum Altitude

INDICATED AIRSPEED

- 175K
- 120K
- 75K
- 180K

RADIO AIDS TO NAVIGATION

- Underline indicates No Voice transmitted on this frequency
- VOR
- VORTAC
- TACAN
- VOR/DME
- DME
- NDB
- NDB/DME

HOLDING PATTERNS

- Holding pattern with max. restricted airspeed: (175K) applies to all altitudes, (210K) applies to altitudes above 6000’ to and including 14000’.
- Arrival Holding Pattern altitude restrictions will be indicated when they deviate from the adjacent leg.
- Timing or distance limits for Hold-in-lieu of Procedure Turn Holding Patterns will be shown. DME fixes may be shown.

FIXES/ATC REPORTING REQUIREMENTS

- Reporting Point
- Intersection

WAYPOINT

- FLYOVER POINT
- MAP WP (Flyover)

Computer Navigation Fix (CNF) - No ATC Function

- (NAME) (*x* omitted when it conflicts with runway pattern)

- 15 DME Distance From Facility
- AUSTIN INT ARC/DME/RNAV Fix

- R-198 Radial line and value
- LR-198 Lead Radial
- LB-198 Lead Bearing

LEGEND 22139
PLANVIEW SYMBOLS (Continued)

LEGEND 21112 INSTRUMENT APPROACH PROCEDURES (CHARTS)

PLANVIEW SYMBOLS

MINIMUM SAFE ALTITUDE (MSA)

Facility Identifier

Airport Identifier

MSA CRW 25 NM

80°

360°

1500 2200

090° — 270°

4500 2500

(arrows on distance circle identify sectors)

TERMINAL ARRIVAL AREA (TAA)

2000 4200

090° — 270°

Straight-in Area

2000

360°

Right Base Area

1500 2000

090° — 1/2 NM

Left Base Area

MISCELLANEOUS

VOR Changeover Point

Rwy 15 512° 00.52’

End of Rwy Coordinates

(DoD only)

S12° 00.52’

W77° 06.91’

Distance not to scale

International Boundary

Air Defense Identification Zone

AIRPORTS

Primary and Secondary (named in planview)

Civil

Seaplane Base

Helipad

Joint (Civil-Military)

OBSTACLES

Spot Elevation

Obstacle

Highest Obstacle

Highest Spot Elevation

Group of Obstacles

Daubful accuracy
PROFILE VIEW

LEGEND 22139 INSTRUMENT APPROACH PROCEDURES (CHARTS)

PROFILE VIEW

Three different methods are used to depict either electronic or vertical guidance: "GS", "GP", or "VDA".
1. "GS" indicates that an Instrument Landing System (ILS) electronic glide slope (a ground antenna) provides vertical guidance. The profile section of ILS procedures depict a GS angle and TCH in the following format: GS 3.00° / TCH 55.

2. "GP" on GLS and RNAV procedures indicates that either electronic vertical guidance (via Wide Area Augmentation System - WAAS or Ground Based Augmentation System - GBAS) or barometric vertical guidance is provided. GLS and RNAV procedures with a published decision altitude (DA/H) depict a GP angle and TCH in the following format: GP 3.00° / TCH 55.

3. An advisory vertical descent angle (VDA) is provided on non-vertically guided conventional procedures and RNAV procedures with only a minimum descent altitude (MDA) to assist in preventing controlled flight into terrain. On Civil FAA procedures, this information is placed above or below the procedure track following the fix it is based on. Absence of a VDA or a note that the VDA is not authorized indicates that the prescribed obstacle clearance surface is not clear and the VDA must not be used below MDA. VDA is depicted in the following format: VDA 3.00° / TCH 55.

ILS or LOC APPROACH

RNAV and GLS PROCEDURES WITH VERTICAL GUIDANCE

NON-VERTICALLY GUIDED CONVENTIONAL PROCEDURES AND RNAV PROCEDURES WITH MDA ONLY

DECENT FROM HOLDING PATTERN

ALTITUDES

PROFILE SYMBOLS

Note: Facilities and waypoints are depicted as a solid vertical line while fixes and intersections are depicted as a dashed vertical line.
DEPARTURE PROCEDURE (DP) CHARTS

LEGEND

DEPARTURE PROCEDURE (DP) CHARTS

RADIO AIDS TO NAVIGATION

Compulsory:

- VOR
- VORTAC
- DME
- VOR/DME
- TACAN
- NDB/DME

Non-Compulsory:

- LOC
- LOC/DME (shown when installation is offset from its normal position off the end of the runway.)
- Marker Beacon
- LMM, LOM (Compass locator)
- Localizer Front Course
- SDF Course
- Localizer Back Course (Shading on left)
- (Y) TACAN must be placed in "Y" mode to receive distance information

FIXES/ATC REPORTING REQUIREMENTS

- Reporting Points
 NNN°00.00’ WNN°00.00’
- Obvious DME
 (DME mileage matches route mileage)
- WAYPOINT (Compulsory)
- WAYPOINT (Non-Compulsory)
- FLYOVER POINT
- X Computer Navigation Fix (CNF) - No ATC Function
 (JHNN) NNN°00.00’ WNN°00.00’

MISCELLANEOUS

- Changeover Point
- Distance not to scale
- International Boundary
- Sector Boundary
- Air Defense Identification Zone
- Takeoff Minimums and (Obstacle) Departure Procedures entry published.

ROUTES

- 4500 MEA-Minimum Enroute Altitude
- 3500 MOCA-Minimum Obstruction Clearance Altitude
- 270° Departure Route
- (65) Mileage between Radio Aids, Reporting Points, and Route Breaks
- Transition Route
- R-275 Radial line and value
- Last Communications Track
- Visual Flight Path
- V12 J80 Airway/Jet Route Identification
- Holding pattern with max. restricted airspeed (175K) applies to all altitudes (210K) applies to altitudes above 6000’ and including 14000’
- Lost Comm Holding Pattern

SPECIAL USE AIRSPACE

- R-Restricted
- W-Warning
- P-Prohibited
- A-Alert
- MOA-Military Operations Area

ALTITUDES

- 3500
 Mandatory Altitude (Cross at)
 Minimum Altitude (Cross at or below)
- 2300
 4800
 Maximum Altitude (Cross at or below)
 Block Altitude
- 15000
- 12000

TO Altitude restriction

INDICATED AIRSPEED

- 175K Mandatory Airspeed
- 120K Minimum Airspeed
- 250K Maximum Airspeed

AIRPORTS

- Civil
- Military
- Joint (Civil-Military)
- Heliport

MINIMUM SAFE ALTITUDE (MSA)

- Facility Identifier
- Airport Identifier

- MSA CRW 2.5 NM
- MSA AIA 2.5 NM

(arrows on distance circle identify sectors)
Approach lighting and visual glide slope systems are indicated on the airport sketch by an identifier, e.g., \(\mathcal{A}\), \(\mathcal{C}\), etc.

A dot "•" portrayed with approach lighting letter identifier indicates sequenced flashing lights (F) installed with the approach lighting system e.g., \(\mathcal{A}\). Negative symbology, e.g., \(\mathcal{A}\), \(\mathcal{C}\), indicates Pilot Controlled Lighting (PCL).

CATEGORY I APPROACH LIGHTING SYSTEM

ALSF-1

- RED
- RED
- GREEN

- SEQUENCED FLASHING LIGHTS

(High Intensity)

LENGTH 2400/3000 FEET

SHORT APPROACH LIGHTING SYSTEM

SALS/SALSF

- SEQUENCED FLASHING LIGHTS FOR SALSF ONLY

(High Intensity)

LENGTH 1500 FEET

SIMPLIFIED SHORT APPROACH LIGHTING SYSTEM

SSALR

- SEQUENCED FLASHING LIGHTS

(High Intensity)

LENGTH 2400/3000 FEET

CATEGORY II APPROACH LIGHTING SYSTEM

ALSF-2

- WHITE
- RED
- RED

- SEQUENCED FLASHING LIGHTS

(High Intensity)

LENGTH 2400/3000 FEET

MEDIUM INTENSITY APPROACH LIGHTING SYSTEM

MALS

- WHITE

SEQUENCED FLASHING LIGHTS FOR MALSF/SSALF ONLY

LENGTH 1500 FEET

MEDIUM INTENSITY (MALS and MALSF) OR SIMPLIFIED SHORT SSALS AND SSALF APPROACH LIGHTING SYSTEMS

RUNWAY TOUCHDOWN ZONE AND CENTERLINE LIGHTING SYSTEMS

TDZ/CL

RUNWAY CENTERLINE LIGHTS

TDZL

TDZL

AVAILABILITY of TDZ/CL will be shown by NOTE in SKETCH e.g. "TDZ/CL Rwy 15"
APPROACH LIGHTING SYSTEM (Continued)

LEGEND 22195

INSTRUMENT APPROACH PROCEDURES (CHARTS)
APPROACH LIGHTING SYSTEM - UNITED STATES

Approach lighting and visual glide slope systems are indicated on the airport sketch by an identifier, \(\mathbb{P}\), \(\mathbb{S}\), etc.

A dot "\(*\)" portrayed with approach lighting letter identifier indicates sequenced flashing lights (F) installed with the approach lighting system e.g., \(\mathbb{P}\). Negative symbology, e.g., \(\mathbb{S}\), \(\mathbb{S}\) indicates Pilot Controlled Lighting (PCL).

\[\mathbb{P}\] PRECISION APPROACH PATH INDICATOR
PAPI

\[\mathbb{S}\] PULSATING VISUAL APPROACH SLOPE INDICATOR
PVASI

\[\mathbb{V}\] VISUAL APPROACH SLOPE INDICATOR
VASI

CAUTION: When viewing the pulsating visual approach slope indicators in the pulsating white or pulsating red sectors, it is possible to mistake this lighting aid for another aircraft or a ground vehicle. Pilots should exercise caution when using this type of system.

\[\mathbb{V}\] TRI-COLOR VISUAL APPROACH SLOPE INDICATOR
TRCV

CAUTION: When the aircraft descends from green to red, the pilot may see a dark amber color during the transition from green to red.

\[\mathbb{V}\] ALIGNMENT OF ELEMENTS SYSTEMS
APAP

Painted panels which may be lighted at night. To use the system the pilot positions the aircraft so the elements are in alignment.
There are several references available from the FAA to aid pilots and other interest parties to learn more about FAA Charts and other aspects of aviation.

<table>
<thead>
<tr>
<th>Publication</th>
<th>FAA Publication ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Information Manual (AIM)</td>
<td>FAA-H-8083-3A</td>
</tr>
<tr>
<td>Airplane Flying Handbook</td>
<td>FAA-H-8083-21A</td>
</tr>
<tr>
<td>Helicopter Flying Handbook</td>
<td>FAA-H-8083-16B</td>
</tr>
<tr>
<td>Pilot's Handbook of Aeronautical Knowledge</td>
<td>FAA-G-8082-22</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

A

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF</td>
<td>Army Air Field</td>
</tr>
<tr>
<td>AAS</td>
<td>Airport Advisory Service</td>
</tr>
<tr>
<td>AAUP</td>
<td>Attention All Users Page</td>
</tr>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>ADF</td>
<td>Automatic Direction Finder</td>
</tr>
<tr>
<td>ADIZ</td>
<td>Air Defense Identification Zone</td>
</tr>
<tr>
<td>ADS</td>
<td>Automatic Dependent Surveillance</td>
</tr>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance-Broadcast</td>
</tr>
<tr>
<td>Advry</td>
<td>Advisory</td>
</tr>
<tr>
<td>AFB</td>
<td>Air Force Base</td>
</tr>
<tr>
<td>AFIS</td>
<td>Automatic Flight Information Service</td>
</tr>
<tr>
<td>AFS</td>
<td>Air Force Station</td>
</tr>
<tr>
<td>AFSS</td>
<td>Automated Flight Service Station</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>AIM</td>
<td>Aeronautical Information Manual</td>
</tr>
<tr>
<td>AIRAC</td>
<td>Aeronautical Information Regulation And Control</td>
</tr>
<tr>
<td>AK</td>
<td>Alaska</td>
</tr>
<tr>
<td>AL</td>
<td>Approach and Landing</td>
</tr>
<tr>
<td>ANG</td>
<td>Air National Guard</td>
</tr>
<tr>
<td>APP</td>
<td>Approach</td>
</tr>
<tr>
<td>APP CON</td>
<td>Approach Control</td>
</tr>
<tr>
<td>APP CRS</td>
<td>Approach Course</td>
</tr>
<tr>
<td>Apt</td>
<td>Airport</td>
</tr>
<tr>
<td>APV</td>
<td>Approaches with Vertical Guidance</td>
</tr>
<tr>
<td>ARP</td>
<td>Airport Reference Point</td>
</tr>
<tr>
<td>ARTCC</td>
<td>Air Route Traffic Control Center</td>
</tr>
<tr>
<td>ASDA</td>
<td>Accelerate-Stop Distance Available</td>
</tr>
<tr>
<td>ASDE-X</td>
<td>Airport Surface Detection Equipment-Model X</td>
</tr>
<tr>
<td>ASOS</td>
<td>Automated Surface Observing Station</td>
</tr>
<tr>
<td>ASR</td>
<td>Airport Surveillance Radar</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATIS</td>
<td>Automatic Terminal Information Service</td>
</tr>
<tr>
<td>ATS</td>
<td>Air Traffic Service</td>
</tr>
<tr>
<td>AUNICOM</td>
<td>Automated Aeronautical Advisory Station</td>
</tr>
<tr>
<td>AWOS</td>
<td>Automated Weather Observing Station</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baro-VNAV</td>
<td>Barometric Vertical Navigation</td>
</tr>
<tr>
<td>BS</td>
<td>Broadcast Station</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAC</td>
<td>Caribbean Aeronautical Chart</td>
</tr>
<tr>
<td>CAT</td>
<td>Category</td>
</tr>
<tr>
<td>CFA</td>
<td>Controlled Firing Areas</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CH</td>
<td>Channel</td>
</tr>
<tr>
<td>CL</td>
<td>Runway Centerline Lights</td>
</tr>
<tr>
<td>CLNC DEL</td>
<td>Clearance Delivery</td>
</tr>
<tr>
<td>CNF</td>
<td>Computer Navigation Fix</td>
</tr>
<tr>
<td>COP</td>
<td>Changeover Point</td>
</tr>
<tr>
<td>CPDLC</td>
<td>Controller Pilot Data Link Communication</td>
</tr>
<tr>
<td>CRS</td>
<td>Course</td>
</tr>
<tr>
<td>CT</td>
<td>Control Tower</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTAF</td>
<td>Common Traffic Advisory Frequency</td>
</tr>
<tr>
<td>CVFP</td>
<td>Charted Visual Flight Procedure</td>
</tr>
<tr>
<td>CZ</td>
<td>Control Zone (Canada)</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>East</td>
</tr>
<tr>
<td>EFAS</td>
<td>Enroute Flight Advisory Service</td>
</tr>
<tr>
<td>EFB</td>
<td>Electronic Flight Bag</td>
</tr>
<tr>
<td>Elev</td>
<td>Elevation</td>
</tr>
<tr>
<td>EMAS</td>
<td>Engineered Materials Arresting System</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAF</td>
<td>Final Approach Fix</td>
</tr>
<tr>
<td>FAP</td>
<td>Final Approach Point</td>
</tr>
<tr>
<td>FAR</td>
<td>Federal Aviation Regulation</td>
</tr>
<tr>
<td>FBO</td>
<td>Fixed-Based Operator</td>
</tr>
<tr>
<td>FIR</td>
<td>Flight Information Region</td>
</tr>
<tr>
<td>FL</td>
<td>Flight Level</td>
</tr>
<tr>
<td>FLIP</td>
<td>Flight Information Publication</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>FREQ</td>
<td>Frequency</td>
</tr>
<tr>
<td>FRZ</td>
<td>Flight Restricted Zone</td>
</tr>
<tr>
<td>FSDO</td>
<td>Flight Standards District Office</td>
</tr>
<tr>
<td>FSS</td>
<td>Flight Service Station</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBAS</td>
<td>Ground-Based Augmentation System</td>
</tr>
<tr>
<td>GCO</td>
<td>Ground Communications Outlet</td>
</tr>
<tr>
<td>GLS</td>
<td>GBAS Landing System</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>GND CON</td>
<td>Ground Control</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GP</td>
<td>Glide Path</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GS</td>
<td>Glide Slope</td>
</tr>
<tr>
<td>GS</td>
<td>Ground Speed</td>
</tr>
</tbody>
</table>
H

HAA - Height Above Airport
HAR - High Altitude Redesign
HAT - Height Above Touchdown
HCH - Heliport Crossing Height
HF - High Frequency
HIRL - High Intensity Runway Lights
HS - Hot Spot

I

IAC - Interagency Air Committee
IACC - Interagency Air Cartographic Committee
IAF - Initial Approach Fix
IAP - Instrument Approach Procedure
ICAO - International Civil Aviation Authority
IDT - Identifier
IF - Intermediate Fix
IFR - Instrument Flight Rules
ILS - Instrument Landing System
IMC - Instrument Meteorological Conditions
INS - Inertial Navigation System
IR - Instrument Route (Military)
IRU - Inertial Reference Unit

J

JO - Joint Order

K

KIAS - Knots

L

LAA - Local Airport Advisory
LAAS - Local Area Augmentation System
LAHSO - Land and Hold Short
LDA - Landing Distance Available
LDA - Localizer-type Directional Aid
Ldg - Landing
LF - Low Frequency
LIRL - Low Intensity Runway Lights
LNAV - Lateral Navigation
LOC - Localizer
LOM - Locator Outer Marker
LPV - Localizer Performance with Vertical Guidance
LRRS - Long Range Radar Station
LTP - Landing Threshold Point

M

MAA - Maximum Authorized Altitude
MAP - Missed Approach Point
MCA - Minimum Crossing Altitude
MCAS - Marine Corps Air Station
MDA - Minimum Descent Altitude
MDH - Minimum Descent Height

MEA - Minimum Enroute Altitude
MEF - Maximum Elevation Figure
MF - Medium Frequency
MIA - Minimum IFR Altitude
MIIRL - Medium Intensity Runway Lights
MOA - Military Operations Areas
MOCA - Minimum Obstruction Clearance Altitude
MON - Minimum Operational Network
MORA - Minimum Off-Route Altitude
MRA - Minimum Reception Altitude
MSA - Minimum Safe Altitude
MSL - Mean Sea Level
MTA - Minimum Turning Altitude
MTR - Military Training Route
MVA - Minimum Vector Altitude

N

N - North
N/A - Not Applicable
NA - Not Authorized
NAAS - Naval Auxiliary Air Station
NAS - Naval Air Station
NAS - National Airspace System
NAV - Naval Air Facility
NAVAID - Navigational Aid (Ground based)
NDB - Non-Directional Radiobeacon
NextGen - Next Generation Air Transportation System
NFDC - National Flight Data Center
NFPO - National Flight Procedures Office
NM - Nautical Mile
NOAA - National Oceanic and Atmospheric Administration
NO A/G - No Air-to-Ground Communication
NOTAM - Notice to Air Missions, formerly known as Notice to Airmen
NoPT - No Procedure Turn
NPA - Non-Precision Approach
NTAP - Notices to Air Missions Publication
NWS - National Weather Service

O

OAT - Outside Air Temperature
OBS - Omni Bearing Selector
OCA - Ocean Control Area
OCS - Obstacle Clearance Surface
ODP - Obstacle Departure Procedure
OM - Outer Marker
OROCA - Off Route Obstruction Clearance Altitude

P

PA - Precision Approach
PAR - Precision Approach Radar
PBN - Performance-Based Navigation
PRM - Precision Runway Monitor
PT - Procedure Turn
PTP - Point-to-Point
Pvt - Private
R
- Radial
- Receive
- Restricted Area (Special Use Airspace)
- Remote Communications Outlet
- Radius-to-Fix
- Area Navigation
- Required Navigation Performance
- Required Navigation Performance Authorization Required
- Required Obstacle Clearance
- Right Pattern
- Runway Visual Range
- Reduced Vertical Separation Minimum
- Runway

S
- South
- Special Aircraft and Aircrew Authorization Required
- Special Aircraft and Aircrew Requirements
- Satellite Navigation
- Simplified Directional Facility
- Start End of Runway
- Special Flight Rules Area
- Surface
- Special Flight Rules Area
- Standard Instrument Approach Procedures
- Standard Instrument Departure
- Statute Mile
- Special Military Activity Routes
- Surface Movement Guidance and Control System
- Simultaneous Offset Instrument Approaches
- Standard Service Volume
- Standard Terminal Arrival Procedure
- Special Use Airspace
- Special Visual Flight Rules

T
- Transmit
- Travel Advisory
- Terminal Arrival Area
- Terminal Area Chart
- Tactical Air Navigation
- True Air Speed
- Terminal Control Areas (Canada)
- Threshold Crossing Height
- Touchdown Zone
- Touchdown Zone Elevation
- Touchdown Zone Lights
- Touchdown Zone/Centerline Lights
- U.S. Standard for Terminal Instrument Procedures
- Temporary Flight Restriction
- Telephone Information Briefing Service
- Traffic Information Service - Broadcast

U
- Under Construction
- Ultra High Frequency
- Upper Information Region
- Universal Communications
- United States
- United States Army
- United States Air Force
- United State Coast Guard
- Upper Control Area

V
- Visual Climb Over Airport / Airfield
- Vertical Descent Angle
- Visual Decent Point
- Visual Flight Rules
- Visual Glide Slope Indicator
- Very High Frequency
- Visual Meteorological Conditions
- Vertical Navigation
- VHF Omnidirectional Radio Range
- VHF Omnidirectional Radio Range/Tactical Air Navigation
- Vertical Path Angle
- Visual Route (Military)

W
- Warning Area (Special Use Airspace)
- West
- Wide-Area Augmentation System
- World Aeronautical Chart
- Waypoint
- Weather Camera (Alaska)