Aeronautical Information Services

Aeronautical Chart

Users’ Guide

Terminal Procedure Publications

Effective as of 2 December 2021
TABLE OF CONTENTS

TABLE OF CONTENTS .. 3

WHAT’S NEW? .. 5
VFR CHARTS... 5
IFR ENROUTE CHARTS .. 5
TERMINAL PROCEDURE PUBLICATION (TPP) .. 5

INTRODUCTION .. 7
KEEP YOUR CHARTS CURRENT ... 7
EFFECTIVE DATE OF CHART USERS’ GUIDE AND UPDATES .. 7
COLOR VARIATION .. 7
REPORTING CHART DISCREPANCIES .. 7

U.S. TERMINAL PROCEDURES PUBLICATION ... 9
EXPLANATION OF TPP TERMS AND SYMBOLS ... 9
INSTRUMENT APPROACH PROCEDURE CHART .. 10
PLANVIEW ... 17
MISSED APPROACH INFORMATION .. 26
PROFILE VIEW ... 27
LANDING MINIMUMS .. 30
AIRPORT SKETCH .. 32
AIRPORT DIAGRAMS .. 33
DEPARTURE PROCEDURES (DPs) ... 35
STANDARD TERMINAL ARRIVAL (STARs) CHARTS ... 36
CHARTED VISUAL FLIGHT PROCEDURE (CVFP) CHARTS ... 36

U.S. TERMINAL PROCEDURES PUBLICATION SYMBOLS .. 37
GENERAL INFORMATION ... 37
PLANVIEW SYMBOLS ... 37
PROFILE VIEW ... 39
STANDARD TERMINAL ARRIVAL (STAR) CHARTS ... 40
DEPARTURE PROCEDURE (DP) CHARTS .. 41
AIRPORT DIAGRAM/AIRPORT SKETCH .. 42
APPROACH LIGHTING SYSTEM .. 43

REFERENCES ... 45

ABBREVIATIONS ... 47
WHAT’S NEW?
Update as of 2 December 2021

The following charting items have been added to the Chart Users’ Guide since the Guide was last published on 7 October 2021:

VFR CHARTS
No Significant Changes Applied

IFR ENROUTE CHARTS
No Significant Changes Applied

TERMINAL PROCEDURE PUBLICATION (TPP)
No Significant Changes Applied
INTRODUCTION

This Chart Users’ Guide is an introduction to the Federal Aviation Administration’s (FAA) aeronautical charts and publications. It is useful to new pilots as a learning aid, and to experienced pilots as a quick reference guide.

The FAA is the source for all data and information utilized in the publishing of aeronautical charts through authorized publishers for each stage of Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) air navigation including training, planning, and departures, enroute (for low and high altitudes), approaches, and taxiing charts. Digital charts are available online at:

- VFR Charts
- IFR Charts
- Terminal Procedures Publication
- Chart Supplements

Paper copies of the charts are available through an FAA Approved Print Provider. A complete list of current providers is available at http://www.faa.gov/air_traffic/flight_info/aeronav/print_providers/.

The FAA Aeronautical Information Manual (AIM) Pilot/Controller Glossary defines in detail, all terms and abbreviations used throughout this publication. Unless otherwise indicated, miles are nautical miles (NM), altitudes indicate feet above Mean Sea Level (MSL), and times used are Coordinated Universal Time (UTC).

The Notices to Airmen Publication (NOTAM) includes current Flight Data Center (FDC) NOTAMs. NOTAMs alert pilots of new regulatory requirements and reflect changes to Standard Instrument Approach Procedures (SIAPs), flight restrictions, and aeronautical chart revisions. This publication is prepared every 28 days by the FAA, and is available by subscription from the Government Printing Office. For more information on subscribing or to access online PDF copy, go to https://www.faa.gov/air_traffic/publications/notices/.

In addition to NOTAMs, the Safety Alerts/Charting Notices page of the Aeronautical Information Services website is also useful to pilots.

KEEP YOUR CHARTS CURRENT

Aeronautical information changes rapidly, so it is important that pilots check the effective dates on each aeronautical chart and publication. To avoid danger, it is important to always use current editions and discard obsolete charts and publications.

To confirm that a chart or publication is current, refer to the next scheduled edition date printed on the cover. Pilots should also check NOTAMs for important updates between chart and publication cycles that are essential for safe flight.

EFFECTIVE DATE OF CHART USERS’ GUIDE AND UPDATES

All information in this guide is effective as of 2 December 2021. All graphics used in this guide are for educational purposes. Chart symbology may not be to scale. Please do not use them for flight navigation.

The Chart Users’ Guide is updated when there is new chart symbology or when there are changes in the depiction of information and/or symbols on the charts. It will be published in accordance with the 56-day aeronautical chart product schedule.

COLOR VARIATION

Although the digital files are compiled in accordance with charting specifications, the final product may vary slightly in appearance due to differences in printing techniques/processes and/or digital display techniques.

REPORTING CHART DISCREPANCIES

Your experience as a pilot is valuable and your feedback is important. We make every effort to display accurate information on all FAA charts and publications, so we appreciate your input. Please notify us concerning any requests for changes, or potential discrepancies you see while using our charts and related products.

FAA, Aeronautical Information Services
1305 East-West Highway
SSMC4, Room 3424
Silver Spring, MD 20910-3281

Telephone Toll-Free 1-800-638-8972
Aeronautical Inquires: https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/Aeronautical_Inquiries/
U.S. TERMINAL PROCEDURES PUBLICATION

The U.S. Terminal Procedures Publication (TPPs) includes the Instrument Approach Procedures (IAPs), Departure Procedures (DPs) charts, Standard Terminal Arrival (STAR) charts, Charted Visual Flight Procedure (CVFP) charts, and Airport Diagrams. Also included are Takeoff Minimums, (Obstacle) Departure Procedures, Diverse Vector Area (RADAR Vectors), RADAR and Alternate Minimum textual procedures.

EXPLANATION OF TPP TERMS AND SYMBOLS

The information and examples in this section are based primarily on the IFR (Instrument Flight Rules) Terminal Procedures Publication (TPP). The publication legends list aeronautical symbols with a brief description of what each symbol depicts. This section will provide more detailed information of some of the symbols and how they are used on TPP charts.

FAA Terminal charts are prepared in accordance with specifications of the Interagency Air Committee (IAC) and their supporting technical groups for the purpose of standardization, which are approved by representatives of the Federal Aviation Administration (FAA), and the Department of Defense (DoD).

The Terminal Procedure Publication is made up of the following charts:

- Instrument Approach Procedure (IAP) Charts
- Airport Diagrams
- Departure Procedures (DP)
- Standard Terminal Arrival (STAR) Charts
- Charted Visual Flight Procedure (CVFP) Charts
The IAPs (charts) are divided into various sections:

- Margin Identification Information
- Briefing Strip Information
- Planview
- Missed Approach Information
- Profile View
- Landing Minimums
- Airport Sketch

NOT FOR NAVIGATION

VGSi and RNAV g/lpath not coincident (VGSi Angle 3.0°/TCH 4°).

28°33'N 81°20'W
Margin Identification Information

The margin identification at the top, bottom, and sides of the chart provides information about the airport location, procedure identification, and chart currency. The charts are organized by city first, then airport name and state, with the exception of military charts, which are organized by airport name. Going from the top of the chart, reading from left to right, and going down the chart, Margin Identification Information is organized in the following way.

The hash marks along the top and bottom borders of military Instrument Approach Charts indicate that the procedure was designed using High Altitude criteria contained in FAA Order 8260.3. These procedures are designed to support high performance military aircraft operations and are not intended for civilian use.
Top Margin Information:

The city and state with which the airport is associated is located on both the top and bottom margins.

At the center of the top margin is the FAA numbering system. This Approach and Landing (AL) number is followed by the organization responsible for the procedure in parentheses, e.g., AL-18 (FAA), AL-227 (USAF).

<table>
<thead>
<tr>
<th>WAAS CH 56239 W34B</th>
<th>APP CRS 326°</th>
<th>Rwy Idg 3715</th>
<th>TDZE 182</th>
<th>Apt Elev 192</th>
</tr>
</thead>
</table>

The procedure title is located on both the top and bottom margins. It is derived from the type of navigational facility that is providing the final approach course guidance. The title is abbreviated, e.g. ILS, RNAV, NDB, etc. For airports with parallel runways and simultaneous approach procedures, “L”, “R” or “C” follows the runway number to distinguish between left, right, and center runways.

The airport name is shown on both the top and bottom margins below the procedure title. The airport identifier is shown in parentheses following the airport name. Airports outside the contiguous United States will be shown with the FAA designated identifier followed by the ICAO location identifier.

The Date of Latest Revision is shown on the top margin above the procedure title. The Date of Latest Revision identifies the Julian date the chart was last revised for any reason. The first two digits indicate the year, the last three digits indicate the day of the year (001 to 365/6).

<table>
<thead>
<tr>
<th>WASHINGTON, DC</th>
<th>AL-5326 (FAA)</th>
<th>15344</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAAS CH 56239 W34B</td>
<td>APP CRS 326°</td>
<td>Rwy Idg 3715</td>
</tr>
</tbody>
</table>

Side Margin Information:

The side margins show the volume identification, i.e. SW-3, followed by the current issue date and the next issue date, e.g. SW-3, 21 JUL 2016 to 15 SEP 2016.

Bottom Margin Information:

The FAA Procedure Amendment Number, located on the left bottom margin below the City, State, represents the most current amendment of a given procedure. The Procedure Amendment Effective Date represents the AIRAC cycle date on which the procedure amendment was incorporated into the chart. Updates to the amendment number and effective date represent procedural/criteria revisions to the charted procedure, e.g., course, fix, altitude, minima, etc.

Example: Original Procedure Date

<table>
<thead>
<tr>
<th>WASHINGTON, DC</th>
<th>MANASSAS RGNL/HARRY P DAVIS FLD (HEF)</th>
<th>38°43'N-77°31'W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig 10DEC15</td>
<td>RNAV (GPS) RWY 34L</td>
<td></td>
</tr>
</tbody>
</table>

Example: Amendment Procedure Date

<table>
<thead>
<tr>
<th>WASHINGTON D.C.</th>
<th>MANASSAS RGNL/HARRY P DAVIS FLD (HEF)</th>
<th>38°43'N-77°31'W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amdt 18 28MAY15</td>
<td>RNAV (GPS) RWY 34L</td>
<td></td>
</tr>
</tbody>
</table>
The coordinates for the airport reference point are located at the center of the bottom margin.

BRIEFING STRIP INFORMATION

At the top of every TPP is the Briefing Strip which consists of three stacked strips of information immediately above the planview. Information varies depending upon the type of procedure.

![Top Briefing Strip](image)

Top Briefing Strip

The top briefing strip contains procedural information in three separate boxes, in the following sequence from left to right:

1. NAVAID Info
2. APP CRS
3. Rwy Ldg
 - TDZE
 - Apt Elev

- **Box 1: Primary Procedure Navigation Information**: The primary navigation type (VOR, LOC, NDB, RNAV, etc.) with its identifier and frequency/channel. If applicable, WAAS, the WAAS Channel Number, and the WAAS Reference Path indicator are shown stacked top to bottom. If the primary navigation type is GBAS, then the following information is shown, stacked top to bottom: GBAS, CH NNNN, RPI XXXX. If there is not a primary Navigation Box required, the first box is removed.

- **Box 2: Final Approach Course Information**: The inbound Approach Course (APP CRS) is shown.

- **Box 3: Runway Landing Information**: Stacked top to bottom, the runway landing distance (Rwy Ldg), the Touchdown Zone Elevation (TDZE), and the Airport Elevation (Apt Elev) are shown. Rwy Ldg may not reflect full runway length due to displaced thresholds and shorter declared distances.

Top Briefing Strip Examples:

- **Ground based NAVAID**:
 - **DENVER, COLORADO**
 - **LOC/DME I-DZG**: 111.55
 - **APP CRS**: 082°
 - **Rwy Ldg**
 - **TDZE**: 12000
 - **Apt Elev**: 5352

- **RNAV-WAAS**:
 - **DENVER, COLORADO**
 - **WAAS CH**: 82628
 - **APP CRS**: 173°
 - **Rwy Ldg**
 - **TDZE**: 16000
 - **Apt Elev**: 5326

- **GBAS**:
 - **NEWARK, NEW JERSEY**
 - **GBAS CH**: 22727
 - **APP CRS**: 039°
 - **Rwy Ldg**
 - **TDZE**: 8460
 - **Apt Elev**: 10
No Primary NAVAID box:

DENVER, COLORADO

APP CRS
173°
Rwy Idg
12000
TDZE
5339
Apt Elev
5434

RNAV (RNP) Z RWY 17L
DENVER INTL (DEN)

Circling Approach:

ROANOKE, VIRGINIA

VOR/ODR
114.9
APP CRS
236°
Rwy Idg
N/A
TDZE
N/A
Apt Elev
1175

NOTES BOX MISSPED APPROACH
PROCEDURE TEXT BOX

APPROACH LIGHTING SYSTEM

VOR/DME-A
ROANOKE-BLACKSBURG RGNL/WOODRUM FLD (ROA)

Sidestep Procedure:

LOS ANGELES, CALIFORNIA

LOC/DME I-LOSS
108.5
Chan 22
APP CRS
251°
Rwy Idg
24R
TDZE
8925
120
Apt Elev
9483
121

ILS or LOC RWY 24R
LOS ANGELES INTL (LAX)

Middle Briefing Strip

The middle briefing strip may contain information in up to three separate boxes, when available, in the following sequence from left to right:

1. NOTES BOX
2. APPROACH LIGHTING SYSTEM
3. MISSED APPROACH PROCEDURE TEXT BOX

- **Box 1: Notes Box**: contains procedure notes, Equipment/Requirements Notes box and Takeoff, Alternate, RADAR, WAAS, and/or Cold Weather indicators (details provided below under Notes Box).

- **Box 2: Approach Lighting System Box (when applicable)**: shows the approach lighting system name and charting icon. Multiple approach lighting systems may be shown for approaches that have straight-in minimums for parallel runways.

- **Box 3: Missed Approach Procedure Text Box**: The full textual description of the missed approach procedure is provided here.

Notes Box

Procedure Equipment Requirements Notes Box

Performance-Based Navigation (PBN) Requirements and ground-based Equipment Requirements are displayed in separate, standardized notes boxes. For procedures with PBN elements, the PBN box contains the procedure’s navigation specification(s). If required, specific sensors or infrastructure needed for the navigation solution, additional or advanced functional requirements, and the minimum Required Navigation Performance (RNP) value and any amplifying remarks will also be included. Items listed in this PBN box are REQUIRED. The separate Equipment Requirements Box will list ground-based equipment requirements.
On procedures with both PBN elements and ground-based equipment requirements, the PBN requirements box is listed first.

Notes Symbols

Several different symbols may appear within the Notes Box:

- **T** An entry is published in the Takeoff Minimums, (Obstacle) Departure Procedures, and Diverse Vector Area (Radar Vectors) section of the TPP.
- **A** Non-standard IFR alternate minimums exist. Refer to IFR Alternate Airport Minimums section of the TPP.
- **NA** Alternate minimums are not authorized due to unmonitored facility or absence of weather reporting service.
- **W** WAAS (Wide Area Augmentation System)
- **-12°C** Cold Temperature Airport

The negative \(W \) within a black square box symbol shown in the Notes section below any “A” or “T” Symbol indicates that outages of the WAAS (Wide Area Augmentation System) vertical guidance may occur daily at this location due to initial system limitations. WAAS NOTAMs for vertical outages are not provided for this approach. Use LNAV minima for flight planning at these locations, whether as a destination or alternate. For flight operations at these locations, when the WAAS avionics indicate that LNAV/VNAV or LPV service is available, then vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the procedure, reversion to LNAV minima may be required.

When \(-12°C\) appears in the Notes section below all other symbols it indicates a cold temperature altitude correction is required at that airport when the reported temperature is at or below the published temperature. Advise ATC with altitude correction. Advising ATC with altitude corrections is not required in the final segment. See Aeronautical Information Manual (AIM), Chapter 7, for guidance and additional information. For a complete list of cold temperature airports, see https://aeronav.faa.gov/d-tpp/Cold_Temp_Airports.pdf.

When “ASR”, “PAR” or “ASR/PAR” appear in the Note section immediately below the “T” and “A” symbols it indicates there are published Radar Instrument Approach Minimums. Where radar is approved for approach control service, it is used not only for radar approaches (Airport Surveillance Radar [ASR] and Precision Approach Radar [PAR]) but is also used to provide vectors in conjunction with published non-radar approaches based on radio NAVAIDs (ILS, VOR, NDB, TACAN). Radar vectors can provide course guidance and expedite traffic to the final approach course of any established IAP or to the traffic pattern for a visual approach.
Bottom Briefing Strip (Communications Information)

The communications briefing strip contains communication information when available, in separate boxes, listed from left to right in the order that they would be used during arrival with the tower frequency box bolded:

<table>
<thead>
<tr>
<th>ATIS</th>
<th>APP CON</th>
<th>TOWER</th>
<th>GND CON</th>
<th>CLNC DEL</th>
<th>UNICOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXXX</td>
<td>XXXX XXXX</td>
<td>XXXX XXXX</td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
<td>XXXXXXX</td>
</tr>
</tbody>
</table>

- ATIS, AFIS (AK Only) or ASOS/AWOS frequencies (when available, ATIS or AFIS will be the only weather frequency/s published)
- The primary Approach Control (APP CON) name and frequencies; when the primary approach service is provided by other than Approach Control, e.g. FSS (Radio), Tower, Center, the appropriate air traffic facility call name is provided.
- The Control Tower (TOWER) name and frequencies, to include Precision Radar Monitoring (PRM) and frequency
- Ground Control (GND CON) frequencies
- Clearance Delivery (CLNC DEL) frequencies; where a Control Tower does not exist or is part-time, a remoted CLNC DEL may be listed.
- Ground Communications Outlet (GCO) frequency
- Common Traffic Advisory Frequency (CTAF), shown in parentheses when shares a frequency, e.g. UNICOM 122.8 (CTAF)
- UNICOM or AUNICOM frequency
- Controller Pilot Data Link Communication (CPDLC)

Note: Part-time operations will be annotated with a star. Check Chart Supplement for times of operation.
PLANVIEW

The planview of the IAP charts provides an overhead view of the entire instrument approach procedure.

The data on the planview is shown to scale, unless concentric rings, scale breaks or an inset have been used.

- Approach Segments
- NAVAIDs
- Area Navigation (RNAV) Waypoints
- Restrictive Airspeeds
- Restrictive Altitudes
- Holding Patterns and Procedure Turns
- Airports
- Relief (Terrain Features)

- Hydrography
- International Boundary
- Obstacles (Man-made, Terrain and Vegetation)
- Special Use Airspace
- Minimum Safe Altitude
- Terminal Arrival Areas
- Helicopter (Copter) Procedures

Approach Segments

The planview includes a graphical depiction of procedure entry through missed approach.

Sample IAP Example
Complex IAP Example with RF Legs

- **Feeder Routes** (highlighted in blue - See Simple IAP Example on previous page) may be used to provide a transition from the enroute structure to the IAF.

- **Initial Approach** (highlighted in purple in examples above) is the segment between the initial approach fix (IAF) and the intermediate fix (IF) or the point where the aircraft is established on the intermediate course or final approach course.

- **Intermediate Approach** (highlighted in yellow in examples above) is the segment between the intermediate fix or point and the final approach fix.

- **Final Approach Course** (highlighted in red in the examples above) is the segment between the final approach fix or point and the runway, airport, or missed approach point.

- **Missed Approach** (highlighted in green in the example above) begins at the MAP and continues until the designated fix or waypoint. Missed Approach Procedure Track is shown as a hash marked line in the planview. If the missed approach fix falls outside of the area of the planview it will be shown in a separate box in the planview.
- **DME arcs or Radius-to-Fix legs (RF)** are shown as smooth arcs from a designated start point to a designated terminus.

- **Visual segment** - Instrument approach procedures, including Copter approach procedures, that terminate or have missed approaches prior to the airport/heliport, and are authorized to proceed visually, will depict the visual flight path by a dashed line symbol from the missed approach point to the airport.

 On RNAV charts where the visual track may only apply to a specific line of minima, the visual procedure track line will not be shown in the planview. There will be a note directed to that portion of the procedure track.
NAVAIDs

NAVAIDs used on ground based charts will show the appropriate symbol accompanied by a data box that contains the facility name, frequency, identifier and Morse code. A NAVAID box with a heavy line indicates the primary NAVAID used for the approach.

NAVAIDs used on GPS based charts show the appropriate symbol identified with the name and identifier.

Primary NAVAID - LOC

- **LOC**
- **SEATTLE**
 - Frequency: 116.8
 - Identification: SEA
 - Morse Code:
 - Chan: 115

Secondary NAVAID - VORDME

- **TOGIAK**
 - Frequency: 393.0
 - Identification: TOG
 - Morse Code:
 - Chan: 114 (116.7)

Primary NAVAID - NDB/DME

- **PAINE**
 - Frequency: 110.6
 - Identification: PAE
 - Morse Code:
 - Chan: 43

Secondary NAVAID - NDB/DME

- **PAINE**
 - Frequency: 110.6
 - Identification: PAE
 - Morse Code:
 - Chan: 43

Area Navigation (RNAV) Waypoints

Waypoints are shown with the waypoint symbol accompanied by the five letter identifier. If an RNAV waypoint is collocated with an intersection, DME fix, or NAVAID, the appropriate Intersection, DME fix, or NAVAID symbol will be charted.

NAVAID - ILS Approach

NAVAID - RNAV Approach

On RNAV (RNP) charts, any requirement/capability notes are depicted below the fix/waypoint/NAVAID name. When the required RNP lateral accuracy value for any approach segment other than final approach (e.g. feeder, initial and/or intermediate or missed) are less than standard (RNP 2.00 for feeder, RNP 1.00 for initial and/or intermediate and missed), a note stating the required RNP value may be placed adjacent to the applicable fix at the beginning of the Feeder Route (or annotated in the PBN box). If there is more than one lateral accuracy value within these portions of the procedure, the lowest value is annotated. These notes will take the form “RNP 0.XX, or Min RNP 0.XX” and will be located in close proximity to the relevant fix name (or be identified in the PBN Box).
Localizer Depiction

The localizer is depicted in the Planview using the following symbol. The size of the charted localizer symbol does not serve as an indication of the service volume.

![Localizer (LOC/LDA) Course](image)

Restrictive Airspeeds Along the Procedure Track

Restrictive airspeeds along the procedure track are shown paired with their respective fix/facility.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Speed</td>
<td>Recommended speed is depicted with no lines above or below it</td>
<td>180K</td>
</tr>
<tr>
<td>Minimum Speed</td>
<td>Minimum speed is depicted as a number with a line below it</td>
<td>120K</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>Maximum speed is depicted as a number with a line above it</td>
<td>250K</td>
</tr>
<tr>
<td>Mandatory Speed</td>
<td>Mandatory speed is depicted as a number with a line above and below it</td>
<td>175K</td>
</tr>
</tbody>
</table>

Altitudes

Restrictive altitudes along the procedure track are shown paired with their respective fix/facility. Minimum, Maximum, Mandatory and Recommended Altitudes are shown.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Altitude</td>
<td>Recommended altitude is depicted with no lines above or below it</td>
<td>3000</td>
</tr>
<tr>
<td>Minimum Altitude</td>
<td>Minimum altitude is depicted as a number with a line below it</td>
<td>2500</td>
</tr>
<tr>
<td>Maximum Altitude</td>
<td>Maximum altitude is depicted as a number with a line above it</td>
<td>4300</td>
</tr>
<tr>
<td>Mandatory Altitude</td>
<td>Mandatory altitude is depicted as a number with a line above and below it</td>
<td>5500</td>
</tr>
<tr>
<td>Mandatory Block Altitude</td>
<td>Mandatory block altitude is depicted with a minimum and a maximum altitude.</td>
<td></td>
</tr>
</tbody>
</table>

Altitudes that are shown along a route are minimum altitudes.

![Minimum Route Altitude](image)

Holding Patterns and Procedure Turns

Holding Patterns are used for many reasons, including deteriorating weather or high traffic volume. Holding might also be required following a missed approach. Each holding pattern has a fix, a direction to hold from the fix, and an airway, bearing, course, radial, or route on which the aircraft is to hold. These elements, along with the direction of the turns, define the holding pattern.

![Holding Patterns](image)

Missed Approach Hold In-Lieu of Procedure Turn Arrival

If a holding pattern has a non-standard speed restriction, it will be depicted by an icon with the limiting air speed shown inside the holding pattern symbol. These elements, along with the direction of the turns, define the holding pattern. If two types of holds are located at the same point, the procedural holding pattern will be shown in-lieu of arrival or missed approach holding patterns. Timing or distance limits for Hold-in-lieu of Procedure Turn Holding Patterns will be shown.
Waypoints designated as a holding fix are shown as fly-by, without the circle around the symbol. However, in the event the holding fix/waypoint is also designated in some other part of the procedure (i.e., IAF) with a fly-over function, then the holding fix/waypoint will be charted as a fly-over point.

A procedure turn (PT) is the maneuver prescribed to perform a course reversal to establish the aircraft inbound on an intermediate or final approach course. The procedure turn or hold-in-lieu-of procedure turn is a required maneuver when it is depicted on the approach chart. However, the procedure turn or the hold-in-lieu-of PT is not permitted when the symbol “NoPT” is depicted on the initial segment being flown, when a RADAR VECTOR to the final approach course is provided, or when conducting a timed approach from a holding fix. The procedure turn will be shown in the planview and in the profile of the chart. In the planview, the tip of the procedure turn barb is shown at the procedure turn limit, e.g., 10 NM, 15 NM. Users should be aware that it is possible for there to be a terminal/feeder fix along the procedure track that is not associated with the procedure turn. Fixes associated with the procedure turn are depicted in the profile.

Airports

The primary approach airport is shown to scale by a pattern of all the runways. Airports other than the primary approach airport may be shown with an airport pattern and name when in close proximity to the primary airport.

Relief (Terrain Features)

Terrain is depicted in the planview portion of all IAPs at airports that meet the following criteria:

- If the terrain within the planview exceeds 4,000 feet above the airport elevation, or
- If the terrain within a 6.0 nautical mile radius of the Airport Reference Point (ARP) rises to at least 2,000 feet above the airport elevation.

When an airport meets either of the above criteria, terrain will be charted by use of contours, spot elevations, and gradient tints of brown on all IAPs for that airport. Contour layers will be shown in no more than five brown tints, with consecutively darker tints used for consecutively higher elevation contour layers.
Hydrography (Water)

Water Depiction is depicted in grey, in the planview portion of IAPs. See previous example. The following hydrographic features are shown:

- Oceans
- Significant rivers and streams
- Significant lakes - If only one river or one small lake is involved, not located in the immediate airport vicinity, the hydrographic information requirement may be waived.

International Boundary

When the planview includes a boundary of another country the International boundaries are shown by a dashed line. International boundaries are identified with country name within the country area.

Obstacles (Man-made, Terrain and Vegetation)

Obstacles are shown as ▲ when they are man-made or vegetation or as ▼ when they are terrain. The highest obstacle, whether man-made or terrain is depicted with a bolder and larger symbol along with larger elevation font size. Any obstacle which penetrates a slope of 67:1 emanating from any point along the centerline of any runway shall be considered for charting within the area shown to scale. Obstacles specifically identified by the approving authority for charting shall be charted regardless of the 67:1 requirement.

Unverified obstacles shall be indicated by a doubtful accuracy symbol ± following the elevation value.

On non-precision approaches, obstacles should be considered when determining where to begin descent from the MDA.
Special Use Airspace (SUA)

SUAs consists of that airspace wherein activities must be confined because of their nature, or wherein limitations are imposed upon aircraft operations that are not a part of those activities, or both. These are prohibited areas, restricted areas, warning areas, Military Operations Areas (MOAs), and alert areas. SUA that falls within the area of coverage of the instrument approach procedure chart are shown only when designated by the approving authority.

Air Defense Identification Zone (ADIZ)

ADIZ is an area of airspace in which the identification, location, and control of aircraft is required in the interest of national security. When designated by the approving authority, ADIZ boundaries that fall within the area of coverage of the chart are shown.

Minimum Safe Altitude (MSA)

MSAs are published for emergency use on IAP charts. MSAs appear in the planview of all IAPs except on approaches for which a Terminal Arrival Area (TAA) is used. The MSA is based on the primary NAVAID, waypoint, or airport reference point on which the IAP is predicated. The MSA depiction on the approach chart contains the identifier of the NAVAID/waypoint/airport used to determine the MSA altitudes. MSAs are expressed in feet above mean sea level and normally have a 25 NM radius; however, this radius may be expanded to 30 NM if necessary to encompass the airport landing surfaces. Ideally, a single sector altitude is established and depicted on the planview of approach charts; however, when necessary to obtain relief from obstructions, the area may be further sectored and as many as four MSAs established. When established, sectors may be no less than 90° in spread. MSAs provide 1,000 feet clearance over all obstructions but do not necessarily assure acceptable navigation signal coverage.

Terminal Arrival Areas (TAAs)

The TAA icons will be positioned in the planview relative to their relationship to the procedure. The icon will not have feeder routes, airways, or radar vectors depicted. The TAA provides a transition from the enroute structure to the terminal environment with little required pilot/air traffic control interface for aircraft equipped with Area Navigation (RNAV) systems. A standard TAA has three areas: straight-in, left base, and right base. The arc boundaries of the three areas of the TAA are published portions of the approach. A TAA provides minimum altitudes with standard obstacle clearance when operating within the TAA boundaries. TAAs are primarily used on RNAV approaches but may be used on an ILS approach when RNAV is the sole means for navigation to the IF; however, they are not normally used in areas of heavy concentration of air traffic.
Example of Standard TAA

Non-standard TAAs may also be published; i.e., one base leg, no base legs.

Example of Non-Standard TAA

Helicopter (Copter) Procedures

Copter procedures may contain either a visual or a VFR segment. Visual segments are depicted using the dashed line symbol below.

Visual Flight Segment
VFR Segments are not depicted with a line, but include the reference bearing and distance information at the endpoint of the VFR Segment, when provided, as shown below.

When a visual flight path or VFR segment is required from the MAP to the heliport or alighting area, and as necessary for an explicit portrayal, an inset of the MAP area may be provided. This MAP area will depict significant landmark visual features. The procedure track, value and distance to the MAP and the visual segment and value to the landing point shall be shown within this inset. If it is a VFR segment, the reference bearing and distance text will be shown at the landing point.

MISSED APPROACH INFORMATION

Missed approach information is shown in 3 locations on the chart:

- The Middle Briefing Strip - The complete textual missed approach instructions are provided at the top of the approach chart in the middle pilot briefing strip.
• The Planview - The missed approach track is drawn using a thin, hash marked line with a directional arrow. If the missed approach fix is off the chart, the missed approach track shall extend to the chart border.

Missed Approach

• The Profile Box - Missed Approach Icons will be depicted in the upper left or upper right of the profile box. The Missed Approach Icons are intended to provide quick, at a glance intuitive guidance to the pilot, to supplement the textual missed approach instructions in the briefing strip. Space permitting, all textual missed approach instructions will be graphically depicted in sequence. If space does not permit the depiction of all missed approach icons, only the first four icon boxes will be shown.

Example Missed Approach Icons

<table>
<thead>
<tr>
<th>Example Missed Approach Icons</th>
<th>Missed Approach Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>13000 R-250 RIL TEKGU INT</td>
<td>MISSED APPROACH: Climb to 13000 on RIL VOR/DME R-250 to TEKGU INT/RIL 19 DME and on EKR VOR/DME R-179 to WOKPA/EKR 44.2 DME and hold, continue climb-in-hold to 13000.</td>
</tr>
<tr>
<td>8000 SVC R-128 Reverse Course</td>
<td>MISSED APPROACH: Climbing left turn to 8000 via SVC R-128, then reverse course to SVC VOR/DME and hold.</td>
</tr>
<tr>
<td>9000 JETRY 12° PAKPE 12° WULKU 289° JNC</td>
<td>MISSED APPROACH: Climb to 9000 on track 112° to JETRY, cross JETRY at or above 6700, and on track 112° to PAKPE, right turn to WULKU, and on track 289° to JNC VOR/DME and hold.</td>
</tr>
<tr>
<td>14000 HOMDU 174° DEVEC 160° FTI</td>
<td>MISSED APPROACH: Climb to 14000 via 174° course to HOMDU and via 160° track to DEVEC and 160° track to FTI VORTAC and hold.</td>
</tr>
<tr>
<td>5800 10000 SVC R-193 KUNRE</td>
<td>MISSED APPROACH: Climb to 5800, then climbing left turn to 10000 via heading 190° and SVC VOR/DME R-193 to KUNRE INT/SVC VOR/DME 24.1 DME and hold.</td>
</tr>
</tbody>
</table>

PROFILE VIEW

A profile diagram of the instrument approach procedure is shown below the planview. The published descent profile and graphical depiction of the vertical path using those facilities, intersections, fixes, etc. identified in the procedure to the runway are shown. A profile view of the procedure track is shown. The approach track begins toward the top of the primary facility line, unless otherwise dictated by the procedure, and shall descend to where the final approach ends and the missed approach begins.
Precision Approaches

On precision approaches, the glideslope (GS) intercept altitude is illustrated by a zigzag line and an altitude. This is the minimum altitude for GS interception after completion of the procedure turn. Precision approach profiles also depict the GS angle of descent, threshold crossing height (TCH) and GS altitude at the outer marker (OM) or designated fix.

Non-Precision Approaches

On non-precision approaches, the final segment begins at the Final Approach Fix (FAF) which is identified with the Maltese cross symbol. When no FAF is depicted, the final approach point is the point at which the aircraft is established inbound on the final approach course. Stepdown fixes may also be provided between the FAF and the airport for authorizing a lower minimum descent angle (MDA) and are depicted with the fix or facility name and a dashed line. Altitude restrictions at stepdown fixes on the final approach on procedures with both precision and non-precision minima are not applicable to precision (ILS, LPV, or LNAV/VNAV) use of the approach. On non-precision only approach procedures, the approach track descends to the MDA or VDP point, thence horizontally to the missed approach point.
Visual Decent Point (VDP)

The Visual Descent Point (VDP), is shown by a bold letter “V” positioned above the procedure track and centered on the accompanying dashed line. (See example below.) The VDP is a defined point on the final approach course of a non-precision straight-in approach procedure from which normal descent from the MDA to the runway touchdown point may be commenced.

Vertical Descent Angle (VDA) and Threshold Crossing Heights (TCH)

A VDA and TCH may be published on non-precision approaches. For Copter approach procedures, a Heliport Crossing Height (HCH) will be depicted in place of the TCH. The VDA is strictly advisory and provides a means to establish a stabilized descent to the MDA. The presence of a VDA does not guarantee obstacle protection in the visual segment. If there are obstacles in the visual segment that could cause an aircraft to destabilize the approach between MDA and touchdown, the profile will not show a VDA and will instead show a note that states “Visual Segment-Obstacles”.

Visual Flight Path

Instrument approach procedures, including Copter approach procedures, that terminate or have missed approaches prior to the airport, and are authorized to proceed visual, shall depict the visual segment by the dashed line symbol from the missed approach point to the airport. The note “Fly visual” (“Proceed visually” on Copter procedures) along with the bearing and distance shall be shown leadered to the visual flight path.

RNAV charts sometimes have visual flight for LNAV/VNAV minima which do not start at the missed approach point. An additional note indicating “LNAV/VNAV” will be placed above the note.

Copter approach procedures with a VFR segment from the missed approach point will not depict the VFR segment with a line in the profile. The note similar to “Proceed VFR from MAP” will be shown.
ILS Glide Slope and RNAV Glidepath

A note providing the glide slope (GS) or glidepath (GP) angle and the threshold crossing height (TCH), are positioned in the lower half of the profile box

- GS will be shown on all ILS procedures.
- GP will be shown GLS procedures and all RNAV procedures with a published decision altitude.

Threshold Crossing Height (TCH) has been traditionally used in “precision” approaches as the height of the glide slope above threshold. With publication of LNAV/VNAV minimums and RNAV descent angles, including graphically depicted descent profiles, TCH also applies to the height of the “descent angle,” or glidepath, at the threshold.

34:1 Surface Clear Stipple Symbol

On RNAV approach charts, a small shaded arrowhead shaped symbol from the end of the VDA to the runway indicates that the 34:1 Obstacle Clearance Surface (OCS) for the visual segment is clear of obstacles. The absence of the symbol indicates that the 34:1 OCS is not clear or a Visual Segment-Obstacles note is indicated on the chart. (See example in VDP Section.)

LANDING MINIMUMS

The landing minimums section is positioned directly below the profile. This section gives the pilot the lowest altitude and visibility requirements for the approach. There are two types of landing minimums: Straight-in landing or Circling. Straight-in landing minimums are the MDA and visibility, or DH and visibility, required for a straight-in landing on a specified runway. Circling minimums are the MDA and visibility required for the circle-to-land maneuver.

The minimums for straight-in and circling are located under each aircraft category. When there is not a division line between minimums for each category, the minimums apply to two or more categories.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS 27</td>
<td>1352/24</td>
<td>200</td>
<td>(200-1/2)</td>
<td></td>
</tr>
<tr>
<td>S-LOC 27</td>
<td>1440/24</td>
<td>288</td>
<td>(300-1/2)</td>
<td>1440/50</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>1540-1</td>
<td>1640-1</td>
<td>1640-1/2</td>
<td>1740-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>COPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-176°</td>
<td>680-1/2</td>
</tr>
</tbody>
</table>

A second category of straight-in minimums called "sidestep" may be depicted where parallel runways exist.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS 24R</td>
<td>320/18</td>
<td>200</td>
<td>(200-1/2)</td>
<td></td>
</tr>
<tr>
<td>S-LOC 24R</td>
<td>460/24</td>
<td>340</td>
<td>(400-1/2)</td>
<td>460/40</td>
</tr>
<tr>
<td>SIDESTEP RWY 24L</td>
<td>580/50</td>
<td>459</td>
<td>(500-1)</td>
<td>580-1/2</td>
</tr>
</tbody>
</table>

All weather minimums in parentheses not applicable to Civil Pilots. Military Pilots refer to appropriate regulations.
The terms used to describe the minimum approach altitudes differ between precision and nonprecision approaches. Precision approaches use DH, which is referenced to the height above touchdown elevation (HAT). Nonprecision approaches use MDA, referenced to “feet MSL.” The MDA is also referenced to HAT for straight-in approaches, or height above airport (HAA) for circling approaches. The figures listed parenthetically are for military operations and are not used in civil aviation.

The visibility values are shown after the DA/DH or MDA. They are provided in statute miles or runway visual range (RVR). RVR is reported in hundreds of feet. If the visibility is in statute miles, there is an altitude number, hyphen, whole or fractional number, e.g. 530-1. This indicates 530 feet MSL and 1 statute mile of visibility. The RVR value is separated from the minimum altitude with a slash, e.g., 1540/24. This indicates 1540 feet MSL and RVR of 2400 feet. When an RVR value is shown, the comparable statute mile equivalent is shown within the military minimums in parentheses as shown in the examples above. This value is determined from the Comparable Values of RVR and Visibility table located in the TPP Legend.

<table>
<thead>
<tr>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>¾</td>
<td>2400</td>
<td>½</td>
<td>3500</td>
<td>¼</td>
<td>5500</td>
<td>1</td>
</tr>
<tr>
<td>1800</td>
<td>¾</td>
<td>2600</td>
<td>½</td>
<td>4000</td>
<td>¼</td>
<td>6000</td>
<td>¼</td>
</tr>
<tr>
<td>2000</td>
<td>¾</td>
<td>3000</td>
<td>¾</td>
<td>4500</td>
<td>¼</td>
<td>6500</td>
<td>¼</td>
</tr>
<tr>
<td>2200</td>
<td>¾</td>
<td>3200</td>
<td>¾</td>
<td>5000</td>
<td>1</td>
<td>7000</td>
<td>¼</td>
</tr>
</tbody>
</table>

When a reference mark (*, **, #, etc.) is shown on a line of minimums, the qualifying footnote is provided in the notes section.
Circling Minimums

There was a change to the TERPS criteria in 2012 that affects circling area dimension by expanding the areas to provide improved obstacle protection. To indicate that the new criteria had been applied to a given procedure, a C is placed on the circling line of minimums. The new circling tables and explanatory information is located in the Legend of the TPP.

The approaches using standard circling approach areas can be identified by the absence of the C on the circling line of minima.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV DA</td>
<td>308/24</td>
<td>200 (200-1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNAV/ VNAV DA</td>
<td>804-2</td>
<td>6% (700-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNAV MDA</td>
<td>800/24</td>
<td>692 (700-1/2)</td>
<td>800-1/2</td>
<td>692 (700-1/2)</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>800-1</td>
<td>687 (700-1)</td>
<td>800-2</td>
<td>687 (700-2)</td>
</tr>
</tbody>
</table>

AIRPORT SKETCH

The airport sketch is a depiction of the airport with emphasis on runway pattern and related information, positioned in either the lower left or lower right corner of the chart to aid pilot recognition of the airport from the air and to provide some information to aid on ground navigation of the airport. The runways are drawn to scale and oriented to true north. Runway dimensions (length and width) are shown for all active runways.

Runway(s) are depicted based on what type and construction of the runway.

<table>
<thead>
<tr>
<th>Hard Surface</th>
<th>Other Than Hard Surface</th>
<th>Metal Surface</th>
<th>Closed Runway</th>
<th>Under Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stopways, Taxiways, Parking Areas

<table>
<thead>
<tr>
<th>Displaced Threshold</th>
<th>Closed Pavement</th>
<th>Water Runway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taxiways and aprons are shaded grey. Other runway features that may be shown are runway numbers, runway dimensions, runway slope, arresting gear, and displaced threshold.

Other information concerning lighting, final approach bearings, airport beacon, obstacles, control tower, NAVAIDs, helipads may also be shown.

Airport Elevation and Touchdown Zone Elevation

The airport elevation is shown enclosed within a box in the upper left corner of the sketch box and the touchdown zone elevation (TDZE) is shown in the upper right corner of the sketch box. The airport elevation is the highest point of an airport's usable runways measured in feet from mean sea level. The TDZE is the highest elevation in the first 3,000 feet of the landing surface. Circling only approaches will not show a TDZE.
Runway Declared Distance Information

Runway declared distance information when available will be indicated by □ and is shown to the right of the airport elevation in the sketch box. Declared distances for a runway represent the maximum distances available and suitable for meeting takeoff and landing distance performance requirements.

Runway Lights

Notes regarding approach lighting systems are shown at the bottom of the sketch box. Runway lights (HIRL) (MIRL) (LIRL) (TDZL)(TDZ/CL) shall be indicated by a note, e.g. HIRL Rwy 9-27.

Other approach lighting is shown on the airport sketch as a symbol on the side of the runway where they are actually located. Symbols that are shown in negative indicate pilot-controlled lighting.

Runway centerline lights (CL) are installed on some precision approach runways to facilitate landing under adverse visibility conditions. They are located along the runway centerline and are spaced at 50 foot intervals. Runways with CL are shown in a negative dot pattern through the middle of the solid runway as illustrated in the airport sketch to right.

Runway centerline lights will be indicated by a note only when paired with TDZL, e.g., TDZ/CL Rwys 6 and 24.

Time/Distance Table

When applicable, a Time/Distance Table is provided below the airport sketch. The table provides the distance and time that is required from the final approach fix to the missed approach point for select groundspeeds.

Base Information (Copter Approaches Only)

Base Information, as required and necessary to identify the MAP area and in the vicinity of the landing area shall be provided. Information shall be limited to and depict significant visual landmark features at and surrounding the MAP area and the heliport/pad of intended landing.

AIRPORT DIAGRAMS

Airport Diagrams are specifically designed to assist in the movement of ground traffic at locations with complex runway/taxiway configurations. Airport Diagrams are not intended for use in approach and landing or departure operations. An airport diagram assists pilots in identifying their location on the airport, thus reducing requests for “progressive taxi instructions” from controllers.
Airport Diagram Features:

1. Runways
 a. complete with magnetic headings (including magnetic variation and epoch year) and identifiers.
 b. Runways under construction shall also be shown.
 c. Runway dimensions, displaced thresholds, runway end elevations.
 d. Runway surface composition
 e. Weight bearing capacity (landing gear configuration or Pavement Classification Number)
 f. Land and Hold Short (LAHSO) lines, ILS hold lines, Localizer/Glide Slope Critical Areas.
 g. Arresting Gear. To include Engineered Materials Arresting System (EMAS).

2. Taxiways, with identifiers. Taxiways under construction shall also be shown.
3. Hot Spot locations.
4. Parking areas, run-up pads, alert areas, landing pads, "Non-Movement" areas (where pilot is NOT under air traffic control), ramps, aprons and hold pads.
5. Turnarounds, blast pads, stopways, overruns, and clearways (include dimensions when known).
6. Large tanks, including fueling area.
7. Control towers (include tower height).
8. Airport beacon.
11. Highest obstruction within diagram boundary.
12. Any building that pilot can taxi to. Other buildings to include terminal/administration and Base operations, fire station, NWS, AFSS, FAA, FSDO, ANG, USCG, FBO.
13. Comm Frequencies.

Note: Star when used in the Comm Frequencies indicates part-time status. Check Chart Supplement for times of operation.
Runway Construction

Runway construction is depicted as follows:

<table>
<thead>
<tr>
<th>Hard Surface</th>
<th>Other Than Hard Surface</th>
<th>Metal Surface</th>
<th>Closed Runway</th>
<th>Under Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
</tbody>
</table>

Stopways, Taxiways, Parking Areas

<table>
<thead>
<tr>
<th>Displaced Threshold</th>
<th>Closed Pavement</th>
<th>Water Runway</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚷</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>🚷</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>🚷</td>
<td>🟢</td>
<td>🟢</td>
</tr>
</tbody>
</table>

Hot Spots

Hot Spots (HS) are a runway safety related problem area or intersection on an airport. Typically it is a complex or confusing taxiway/taxiway or taxiway/runway intersection. A confusing condition may be compounded by a miscommunication between a controller and a pilot, and may cause an aircraft separation standard to be compromised. The area may have a history of surface incidents or the potential for surface incidents.

Hot Spots are indicated on the Airport Diagram with a brown open circle or polygon leadered to a Hot Spot number, e.g., HS 1. The number corresponds to a listing and description on the Hot Spot page in the front the TPP. More information and the location of Hot Spots can be found at http://www.faa.gov/airports/runway_safety/hotspots/hotspots_list/.

DEPARTURE PROCEDURES (DPs)

Departure Procedures (DPs) are designed specifically to assist pilots in avoiding obstacles during the climb to the minimum enroute altitude, and/or airports that have civil IFR takeoff minimums other than standard. There are two types of DPs: Obstacle Departure Procedures (ODPs), printed either textually or graphically and Standard Instrument Departures (SIDs), always printed graphically. SIDs are primarily designed for system enhancement and to reduce pilot/controller workload, and require ATC clearance. ODPs provide obstruction clearance via the least onerous route from the terminal area and may be flown without ATC clearance. All DPs provide the pilot with a safe departure from the airport and transition to the enroute structure.

Generally, DP charts are depicted “not to scale” due to the great distances involved on some procedures or route segments. A “to scale” portrayal may be used if readability is assured.

The DP will show the departure routing, including transitions to the appropriate enroute structure. All routes, turns, altitudes, NAVAIDs, facilities forming intersections and fixes, and those facilities terminating the departure route are shown. A textual description of the departure procedure is also provided. For RNAV DPs, the transition text consists of the transition name and associated computer code. On non-RNAV DPs, the transition text will also include the description of all turns, altitudes, radials, bearings and facilities/fixes needed to guide the user from the common departure point to the terminating facility fix.
Copter DPs may also include a visual or VFR segment. Visual segments are depicted using the dashed line symbol below.

Visual Flight Segment

VFR Segments are not depicted with a line, but include the reference bearing and distance information at the endpoint of the VFR Segment, when provided, as shown below.

Example of Copter with VFR Segment

STANDARD TERMINAL ARRIVAL (STARs) CHARTS

STARs are pre-planned Instrument Flight Rule (IFR) air traffic control arrival procedures for pilot use in graphic and/or textual form. STARs depict prescribed routes to transition the aircraft from the enroute structure to a fix in the terminal area from which an instrument approach can be conducted. STARs reduce pilot/controller workload and air-ground communications, minimizing error potential in delivery and receipt of clearances.

STAR charts generally shall be depicted ‘not to scale’ due to the great distances involved on many procedures and route segments. A ‘to scale’ depiction may be used only if readability is assured.

The STAR will show the arrival routing, including transitions from the appropriate enroute structure. All routes, turns, altitudes, NAVAIDs, facilities forming intersections and fixes, and those facilities/fixes terminating or beginning the arrival route shall be shown in the graphic depiction. A textual description of the arrival procedure is also provided. For RNAV STARs, transition text will consist of the transition name and associated computer code. For non-RNAV STARs, the transition text will also include a description of all turns, altitudes, radials, bearings and facilities/fixes needed to guide the user from the entry point to the common facility/fix.

CHARTED VISUAL FLIGHT PROCEDURE (CVFP) CHARTS

CVFPs are charted visual approaches established for environmental/noise considerations, and/or when necessary for the safety and efficiency of air traffic operations. The approach charts depict prominent landmarks, courses, and recommended altitudes to specific runways. CVFPs are designed to be used primarily for turbojet aircraft. CVFPs are not instrument approaches and do not have missed approach segments.

CVFPs are named for the primary landmark and the specific runway for which the procedure is developed, such as: RIVER VISUAL RWY 18, STADIUM VISUAL RWY 24. The CVFP charts are divided into planview and notes sections separated by a bar scale in 1 NM increments. The planview of the CVFP includes the portrayal of visual approach procedures information, such as landmarks, NAVAIDs, visual track, hydrography, special use airspace and cultural features, as applicable.

CVFPs originate at or near, and are designed around, prominent visual landmarks and typically do not extend beyond 15 flight path miles from the landing runway. Visual tracks start at a geographical point or landmark where the procedure must be flown visually to the airport. The visual track is indicated by a dashed line. Visual tracks may include the track value, distance and minimum or recommended altitudes.
U.S. TERMINAL PROCEDURES PUBLICATION SYMBOLS

GENERAL INFORMATION

Symbols shown are for the Terminal Procedures Publication (TPP) which includes Standard Terminal Arrival (STARs) Charts, Departure Procedures (DPs), Instrument Approach Procedures (IAP) and Airport Diagrams.

PLANVIEW SYMBOLS

LEGEND 2006 INSTRUMENT APPROACH PROCEDURES (CHARTS)

TERMINAL ROUTES

Procedure Track

Missed Approach

Visual Flight Path

3100 NpFT 5.6 NM to GS Intcr

(14.2 to IOM)

Minimum Route Altitude

Feeder Route Mileage

090°

270°

5.6

14.2

-1000

1500

(14.1)

HOLDING PATTERNS

Hold-in-Lieu of Procedure Turn

HOLD 8000

Arrival

090°

1 min

270°

4 NM

Holding pattern with max. restricted airspeed: (175K) applies to all altitudes. (210K) applies to altitudes above 6000’ and including 14000’.

Arrival Holding Pattern altitude restrictions will be indicated when they deviate from the adjacent leg. Timing or distance limits for Hold-in-Lieu of Procedure Turn Holding Patterns will be shown. DME fixes may be shown.

FIXES/ATC REPORTING REQUIREMENTS

Reporting Point

Name (Compulsory)

Name (Non-Compulsory)

WAYPOINT (Compulsory)

WAYPOINT (Non-Compulsory)

FLYOVER POINT

MAP WP (Fflyover)

Computer Navigation Fix (CNF) - No ATC Function

x (NAME) (*x* omitted when it conflicts with runway pattern)

DME Distance

ARC/DME/RNAV Fix

R-198

Radial line and value

L-198

Lead Radial

T-198

Lead Bearing

ALTIMETRIES

3500

Mandatory Altitude

3000

Recommended Altitude

2500

Minimum Altitude

3000

Mandatory Black

4000

Maximum Altitude

VHF Paired Frequency

Primary Navaid

Secondary Navaid

Primary Navaid

Channel 92

Secondary Navaid

LMA

248 NT

114.5 LMA	

512.0/00.80

W77.0/02.00

SCOTT Channel 59

SKE (112.2)

RADIO AIDS TO NAVIGATION

110.1 Underline indicates No Voice transmitted on this Frequency

Compulsory:

VOR

VORTAC

DME

VOR/DME

TACAN

NDB/DME

Non-Compulsory:

VOR

VORTAC

DME

VOR/DME

TACAN

NDB/DME

LOM/LMI (Compass locator at Outer Marker/Middle Marker)

Marker Beacon

Marker beacons that are not specifically part of the procedure.

LOC/LOA

LOC/LDA/DF Transmitter

(Shown when installation is offset from its normal position off the end of the runway.)
PLANVIEW SYMBOLS (Continued)

LEGEND 21112

INSTRUMENT APPROACH PROCEDURES (CHARTS)

PLANVIEW SYMBOLS

MINIMUM SAFE ALTITUDE (MSA)

Facility Identifier

Airport Identifier

(arrows on distance circle identify sectors)

TERMINAL ARRIVAL AREA (TAA)

MISCELLANEOUS

SPECIAL USE AIRSPACE

AIRPORTS

Obstacles

- Spot Elevation
- Group of Obstacles
- Highest Spot Elevation
- Doubtful accuracy

VOR Changeover Point

End of Rwy Coordinates

(DOD only)

Distance not to scale

International Boundary

Air Defense Identification Zone

- Civil
- Seaplane Base
- Joint (Civil-Military)

Primary and Secondary (named in planview)

R-Restricted
W-Warning
P-Prohibited
A-Alert
MOA-Military Operations Area
PROFILE VIEW

Three different methods are used to depict either electronic or vertical guidance: "GS", "GP", or "VDA".
1. "GS" indicates that an Instrument Landing System (ILS) electronic glide slope (a ground antenna) provides vertical guidance. The profile section of ILS procedures depict a GS angle and TCH in the following format: GS 3.00°.
2. "GP" on ILS and RNAV procedures indicates that either electronic vertical guidance (via Wide Area Augmentation System - WAAS or Ground Based Augmentation System - GBAS) or barometric vertical guidance is provided. GLS and RNAV procedures with a published decision altitude (DA/H) depict a GP angle and TCH in the following format: GP 3.00°.
3. An advisory vertical descent angle [VDA] is provided on non-vertically guided conventional procedures and RNAV procedures with only a minimum descent altitude (MDA) to assist in preventing controlled flight into terrain. On Civil (FAA) procedures, this information is placed above or below the procedure track following the fix it is based on. Absence of a VDA or a note that the VDA is not authorized indicates that the prescribed obstacle clearance surface is not clear and the VDA must not be used below MDA. VDA is depicted in the following format: VDA 3.10°.

On Copter procedures this is depicted in the following format: VDA 3.10°.

FAA Chart Users’ Guide - Terminal Procedures Publication (TPP) - Symbols

PROFILE VIEW

INSTRUMENT APPROACH PROCEDURES (CHARTS)

<table>
<thead>
<tr>
<th>ALTITUDES</th>
<th>PROFILE SYMBOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 M</td>
<td>3000 Recommended Altitude</td>
</tr>
<tr>
<td>2000 M</td>
<td>2400 M Mandatory Altitude</td>
</tr>
<tr>
<td>4000 M</td>
<td>2400 M Visual Flight Path</td>
</tr>
</tbody>
</table>

Note: Facilities and waypoints are depicted as a solid vertical line, while fixes and intersections are depicted as a dashed vertical line.
AIRPORT DIAGRAM/AIRPORT SKETCH

LEGEND

INSTRUMENT APPROACH PROCEDURES (CHARTS)

AIRPORT DIAGRAM/AIRPORT SKETCH

Runways
- Hard Surface
- Other Than Hard Surface
- Taxiways, Parking Areas
- Metal Surface
- Closed Runway
- Under Construction
- Water Runway

ARRESTING GEAR: Specific arresting gear systems; e.g., BAK 12, MA-1A etc., shown on airport diagrams, not applicable to Civil Pilots. Military Pilots refer to appropriate DOD publications.

REFERENCE FEATURES
- Displaced Threshold
- Hot Spot
- Runway Holding Position Markings
- Buildings
- 24-Hour Self-Serve Fuel
- Tank
- Obstructions
- Airport Beacon
- Radar Reflectors
- Control Tower
- # When Control Tower and Rotating Beacon are co-located, Beacon symbol will be used and further identified as TWR.
- ## A fuel symbol is shown to indicate 24-hour self-serve fuel available, see appropriate Chart Supplement for further information.

NOTE: All new and revised airport diagrams are shown referenced to the World Geodetic System (WGS) (noted on appropriate diagrams), and may not be compatible with local coordinates published in FUP. (Foreign Only)

Runway Weight Bearing Capacity/PCN Pavement Classification Number is shown as a codified expression. Refer to the appropriate Supplement/Directory for applicable codes.
APPROACH LIGHTING SYSTEM

LEGEND

INSTRUMENT APPROACH PROCEDURES (CHARTS)
APPROACH LIGHTING SYSTEM - UNITED STATES

Approach lighting and visual glide slope systems are indicated on the airport sketch by an identifier, e.g., O, 0, etc.

A dot * portrayed with approach lighting letter identifier indicates sequenced flashing lights (F) installed with the approach lighting system e.g., *F. Negative symbology, e.g., 0, indicates Pilot Controlled Lighting (PCL).

RUNWAY TOUCHDOWN ZONE AND CENTERLINE LIGHTING SYSTEMS

TDZ/CL

RUNWAY CENTERLINE LIGHTS

TDZL

TDZL

A VAILABILITY of TDZ/CL will be shown by NOTE in SKETCH e.g., "TDZ/CL RWY 15"

APPROACH LIGHTING SYSTEM

ALSF-2

ALSF-1

SAME AS INNER 1500' OF ALSF-1

HIGH INTENSITY

LENGTH 2400/3000 FEET

SEQUENCED FLASHING LIGHTS

WHITE

RED

GREEN

NOTE: CIVIL ALSF-2 MAY BE OPERATED AS SSALR DURING FAVORABLE WEATHER CONDITIONS

HIGH INTENSITY

LENGTH 2400/3000 FEET

SEQUENCED FLASHING LIGHTS

WHITE

RED

GREEN

SAME LIGHT CONFIGURATION AS SSALR.

SHORT APPROACH LIGHTING SYSTEM

SALS/SALF

(High Intensity)

OMNIDIRECTIONAL APPROACH LIGHTING SYSTEM

ODALS

THRESHOLD

SEQUENCED FLASHING LIGHTS

LENGTH 1500 FEET

VISUAL APPROACH SLOPE INDICATOR

VASI

VISUAL APPROACH SLOPE INDICATOR WITH STANDARD THRESHOLD CLEARANCE PROVIDED.

ALL LIGHTS WHITE TOO HIGH

FAI LIGHTS RED TOO LOW

ALL LIGHTS RED ON-GUIDE SLOPE

LENGTH 2400/3000 FEET

SEQUENCED FLASHING LIGHTS

WHITE

GREEN

HIGH INTENSITY

LENGTH 1400 FEET

SEQUENCED FLASHING LIGHTS FOR MALSR/SSALF ONLY

MEDIUM INTENSITY APPROACH LIGHTING SYSTEM

with Runway Alignment Indicator Lights

MALS

SAME LIGHT CONFIGURATION AS SSALR.

MEDIUM INTENSITY (MALS and MALSF) OR SIMPLIFIED SHORT (SSALS and SSALF) APPROACH LIGHTING SYSTEMS

3-BAR, 6 OR 16 BAR, VISUAL APPROACH SLOPE INDICATOR THAT PROVIDES 2 GUIDE ANGLES AND 2 THRESHOLD CROSSING HEIGHTS.

VASI 6

VASI 16

THRESHOLD

THRESHOLD

FAA Chart Users' Guide - Terminal Procedures Publication (TPP) - Symbols
APPRAOCH LIGHTING SYSTEM (Continued)

LEGEND

Approach lighting and visual glide slope systems are indicated on the airport sketch by an identifier, ☛, ☜ etc.

A dot * • portrayed with approach lighting letter identifier indicates sequenced flashing lights (F) installed with the approach lighting system e.g., ☞. Negative symbology, e.g., ☛, ☜ indicates Pilot Controlled Lighting (PCL).

P PRECISION APPROACH PATH INDICATOR
PAPI

- Too low
- Slightly low
- On correct approach path
- Slightly high
- Too high

Legend: □ White ■ Red

V PULSATING VISUAL APPROACH SLOPE INDICATOR
PVASI

- Pulsering White
- Steady White
- Alternating Red/White
- Above Glide Path
- On Glide Path
- Slightly Above Glide Path
- Slightly Below Glide Path
- Below Glide Path

Threshold

CAUTION: When viewing the pulsating visual approach slope indicators in the pulsating white or pulsating red sectors, it is possible to mistake this lighting aid for another aircraft or a ground vehicle. Pilots should exercise caution when using this type of system.

W "T" VISUAL APPROACH SLOPE INDICATOR
"T" VASI

- "T" on both sides of RWY.
- Correct approach slope: only cross bar visible.
- Upright "T": Fly Up.
- Inverted "T": Fly Down.
- Red "T": Gross undershoot.

G TRI-COLOR VISUAL APPROACH SLOPE INDICATOR
TRCV

- Above Glide Path: Amber
- On Glide Path: Green
- Below Glide Path: Red

CAUTION: When the aircraft descends from green to red, the pilot may see a dark amber color during the transition from green to red.

S ALIGNMENT OF ELEMENTS SYSTEMS
APAP

- Above glide path
- On glide path
- Below glide path

Painted panels which may be lighted at night. To use the system the pilot positions the aircraft so the elements are in alignment.

LEGEND
REFERENCES

There are several references available from the FAA to aid pilots and other interest parties to learn more about FAA Charts and other aspects of aviation.

<table>
<thead>
<tr>
<th>Publication</th>
<th>FAA Publication ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Information Manual (AIM)</td>
<td>FAA-H-8083-3A</td>
</tr>
<tr>
<td>URL: http://www.faa.gov/air_traffic/publications/</td>
<td></td>
</tr>
<tr>
<td>Airplane Flying Handbook</td>
<td>FAA-H-8083-21A</td>
</tr>
<tr>
<td>URL: https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/airplane_handbook/</td>
<td></td>
</tr>
<tr>
<td>Helicopter Flying Handbook</td>
<td>FAA-H-8083-16B</td>
</tr>
<tr>
<td>URL: http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/</td>
<td></td>
</tr>
<tr>
<td>URL: http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/instrument_procedures_handbook/</td>
<td></td>
</tr>
<tr>
<td>Pilot's Handbook of Aeronautical Knowledge</td>
<td>FAA-G-8082-22</td>
</tr>
<tr>
<td>URL: https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/phak/</td>
<td></td>
</tr>
<tr>
<td>URL: http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/remote_pilot_study_guide.pdf</td>
<td></td>
</tr>
</tbody>
</table>

FAA Chart Users' Guide - References
ABBREVIATIONS

<table>
<thead>
<tr>
<th>A</th>
<th>CTAO - Common Traffic Advisory Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF - Army Air Field</td>
<td>CVFP - Charted Visual Flight Procedure</td>
</tr>
<tr>
<td>AAS - Airport Advisory Service</td>
<td>CZ - Control Zone (Canada)</td>
</tr>
<tr>
<td>AAUP - Attention All Users Page</td>
<td></td>
</tr>
<tr>
<td>AC - Advisory Circular</td>
<td></td>
</tr>
<tr>
<td>ADF - Automatic Direction Finder</td>
<td></td>
</tr>
<tr>
<td>ADIZ - Air Defense Identification Zone</td>
<td></td>
</tr>
<tr>
<td>ADS - Automatic Dependent Surveillance</td>
<td></td>
</tr>
<tr>
<td>ADS-B - Automatic Dependent Surveillance-Broadcast</td>
<td></td>
</tr>
<tr>
<td>Advry - Advisory</td>
<td></td>
</tr>
<tr>
<td>AFB - Air Force Base</td>
<td></td>
</tr>
<tr>
<td>AFIS - Automatic Flight Information Service</td>
<td></td>
</tr>
<tr>
<td>AFS - Air Force Station</td>
<td></td>
</tr>
<tr>
<td>AFSS - Automated Flight Service Station</td>
<td></td>
</tr>
<tr>
<td>AGL - Above Ground Level</td>
<td></td>
</tr>
<tr>
<td>AIM - Aeronautical Information Manual</td>
<td></td>
</tr>
<tr>
<td>AIRAC - Aeronautical Information Regulation And Control</td>
<td></td>
</tr>
<tr>
<td>AK - Alaska</td>
<td></td>
</tr>
<tr>
<td>AL - Approach and Landing</td>
<td></td>
</tr>
<tr>
<td>ANG - Air National Guard</td>
<td></td>
</tr>
<tr>
<td>APP - Approach</td>
<td></td>
</tr>
<tr>
<td>APP CON - Approach Control</td>
<td></td>
</tr>
<tr>
<td>APP CRS - Approach Course</td>
<td></td>
</tr>
<tr>
<td>Apt - Airport</td>
<td></td>
</tr>
<tr>
<td>APV - Approaches with Vertical Guidance</td>
<td></td>
</tr>
<tr>
<td>ARP - Airport Reference Point</td>
<td></td>
</tr>
<tr>
<td>ARTCC - Air Route Traffic Control Center</td>
<td></td>
</tr>
<tr>
<td>ASDA - Accelerate-Stop Distance Available</td>
<td></td>
</tr>
<tr>
<td>ASDE-X - Airport Surface Detection Equipment-Model X</td>
<td></td>
</tr>
<tr>
<td>ASOS - Automated Surface Observing Station</td>
<td></td>
</tr>
<tr>
<td>ASR - Airport Surveillance Radar</td>
<td></td>
</tr>
<tr>
<td>ATC - Air Traffic Control</td>
<td></td>
</tr>
<tr>
<td>ATIS - Automatic Terminal Information Service</td>
<td></td>
</tr>
<tr>
<td>ATS - Air Traffic Service</td>
<td></td>
</tr>
<tr>
<td>AUNICOM - Automated Aeronautical Advisory Station</td>
<td></td>
</tr>
<tr>
<td>AWOS - Automated Weather Observing Station</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Baro-VNAV - Barometric Vertical Navigation</td>
<td></td>
</tr>
<tr>
<td>BS - Broadcast Station</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CAC - Caribbean Aeronautical Chart</td>
<td></td>
</tr>
<tr>
<td>CAT - Category</td>
<td></td>
</tr>
<tr>
<td>CFA - Controlled Firing Areas</td>
<td></td>
</tr>
<tr>
<td>CFR - Code of Federal Regulations</td>
<td></td>
</tr>
<tr>
<td>CH - Channel</td>
<td></td>
</tr>
<tr>
<td>CL - Runway Centerline Lights</td>
<td></td>
</tr>
<tr>
<td>CLNC DEL - Clearance Delivery</td>
<td></td>
</tr>
<tr>
<td>CNF - Computer Navigation Fix</td>
<td></td>
</tr>
<tr>
<td>COP - Changeover Point</td>
<td></td>
</tr>
<tr>
<td>CPDLC - Controller Pilot Data Link Communication</td>
<td></td>
</tr>
<tr>
<td>CRS - Course</td>
<td></td>
</tr>
<tr>
<td>CT - Control Tower</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>DA - Decision Altitude</td>
<td></td>
</tr>
<tr>
<td>DA - Density Altitude</td>
<td></td>
</tr>
<tr>
<td>D-ATIS - Digital Automatic Terminal Information Service</td>
<td></td>
</tr>
<tr>
<td>DH - Decision Height</td>
<td></td>
</tr>
<tr>
<td>DME - Distance Measuring Equipment</td>
<td></td>
</tr>
<tr>
<td>DND - Department of National Defense (Canada)</td>
<td></td>
</tr>
<tr>
<td>DoD - Department of Defense</td>
<td></td>
</tr>
<tr>
<td>DOF - Digital Obstacle File</td>
<td></td>
</tr>
<tr>
<td>DP - Departure Procedure</td>
<td></td>
</tr>
<tr>
<td>DT - Daylight Savings Time</td>
<td></td>
</tr>
<tr>
<td>DVA - Diverse Vector Area</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>E - East</td>
<td></td>
</tr>
<tr>
<td>EFAS - Enroute Flight Advisory Service</td>
<td></td>
</tr>
<tr>
<td>EFB - Electronic Flight Bag</td>
<td></td>
</tr>
<tr>
<td>Elev - Elevation</td>
<td></td>
</tr>
<tr>
<td>EMAS - Engineered Materials Arresting System</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>FAA - Federal Aviation Administration</td>
<td></td>
</tr>
<tr>
<td>FAF - Final Approach Fix</td>
<td></td>
</tr>
<tr>
<td>FAP - Final Approach Point</td>
<td></td>
</tr>
<tr>
<td>FAR - Federal Aviation Regulation</td>
<td></td>
</tr>
<tr>
<td>FBO - Fixed-Based Operator</td>
<td></td>
</tr>
<tr>
<td>FIR - Flight Information Region</td>
<td></td>
</tr>
<tr>
<td>FL - Flight Level</td>
<td></td>
</tr>
<tr>
<td>FLIP - Flight Information Publication</td>
<td></td>
</tr>
<tr>
<td>FMS - Flight Management System</td>
<td></td>
</tr>
<tr>
<td>FREQ - Frequency</td>
<td></td>
</tr>
<tr>
<td>FRZ - Flight Restricted Zone</td>
<td></td>
</tr>
<tr>
<td>FSDO - Flight Standards District Office</td>
<td></td>
</tr>
<tr>
<td>FSS - Flight Service Station</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>GBAS - Ground-Based Augmentation System</td>
<td></td>
</tr>
<tr>
<td>GCO - Ground Communications Outlet</td>
<td></td>
</tr>
<tr>
<td>GLS - GBAS Landing System</td>
<td></td>
</tr>
<tr>
<td>GND - Ground</td>
<td></td>
</tr>
<tr>
<td>GND CON - Ground Control</td>
<td></td>
</tr>
<tr>
<td>GNSS - Global Navigation Satellite System</td>
<td></td>
</tr>
<tr>
<td>GP - Glide Path</td>
<td></td>
</tr>
<tr>
<td>GPS - Global Positioning System</td>
<td></td>
</tr>
<tr>
<td>GS - Glide Slope</td>
<td></td>
</tr>
<tr>
<td>GS - Ground Speed</td>
<td></td>
</tr>
</tbody>
</table>
FAA Chart Users' Guide - Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAA</td>
<td>Height Above Airport</td>
</tr>
<tr>
<td>HAR</td>
<td>High Altitude Redesign</td>
</tr>
<tr>
<td>HAT</td>
<td>Height Above Touchdown</td>
</tr>
<tr>
<td>HCH</td>
<td>Heliport Crossing Height</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>HS</td>
<td>Hot Spot</td>
</tr>
<tr>
<td>IAC</td>
<td>Interagency Air Committee</td>
</tr>
<tr>
<td>IACC</td>
<td>Interagency Air Cartographic Committee</td>
</tr>
<tr>
<td>IAF</td>
<td>Initial Approach Fix</td>
</tr>
<tr>
<td>IAP</td>
<td>Instrument Approach Procedure</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Authority</td>
</tr>
<tr>
<td>IDT</td>
<td>Identifier</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Fix</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>IMC</td>
<td>Instrument Meteorological Conditions</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial Navigation System</td>
</tr>
<tr>
<td>IR</td>
<td>Instrument Route (Military)</td>
</tr>
<tr>
<td>IRU</td>
<td>Inertial Reference Unit</td>
</tr>
<tr>
<td>J</td>
<td>Joint Order</td>
</tr>
<tr>
<td>KIAS</td>
<td>Knots</td>
</tr>
<tr>
<td>LAA</td>
<td>Local Airport Advisory</td>
</tr>
<tr>
<td>LAAS</td>
<td>Local Area Augmentation System</td>
</tr>
<tr>
<td>LAHSO</td>
<td>Land and Hold Short</td>
</tr>
<tr>
<td>LDA</td>
<td>Landing Distance Available</td>
</tr>
<tr>
<td>LDA</td>
<td>Localizer-type Directional Aid</td>
</tr>
<tr>
<td>Ldg</td>
<td>Landing</td>
</tr>
<tr>
<td>LF</td>
<td>Low Frequency</td>
</tr>
<tr>
<td>LIRL</td>
<td>Low Intensity Runway Lights</td>
</tr>
<tr>
<td>LNAV</td>
<td>Lateral Navigation</td>
</tr>
<tr>
<td>LOC</td>
<td>Localizer</td>
</tr>
<tr>
<td>LOM</td>
<td>Locator Outer Marker</td>
</tr>
<tr>
<td>LPV</td>
<td>Localizer Performance with Vertical Guidance</td>
</tr>
<tr>
<td>LRRS</td>
<td>Long Range Radar Station</td>
</tr>
<tr>
<td>LTP</td>
<td>Landing Threshold Point</td>
</tr>
<tr>
<td>MAA</td>
<td>Maximum Authorized Altitude</td>
</tr>
<tr>
<td>MAP</td>
<td>Missed Approach Point</td>
</tr>
<tr>
<td>MCA</td>
<td>Minimum Crossing Altitude</td>
</tr>
<tr>
<td>MCAS</td>
<td>Marine Corps Air Station</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Descent Altitude</td>
</tr>
<tr>
<td>MDH</td>
<td>Minimum Descent Height</td>
</tr>
<tr>
<td>MEA</td>
<td>Minimum Enroute Altitude</td>
</tr>
<tr>
<td>MEF</td>
<td>Maximum Elevation Figure</td>
</tr>
<tr>
<td>MF</td>
<td>Medium Frequency</td>
</tr>
<tr>
<td>MIA</td>
<td>Minimum IFR Altitude</td>
</tr>
<tr>
<td>MIRL</td>
<td>Medium Intensity Runway Lights</td>
</tr>
<tr>
<td>MOA</td>
<td>Military Operations Areas</td>
</tr>
<tr>
<td>MOCA</td>
<td>Minimum Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>MON</td>
<td>Minimum Operational Network</td>
</tr>
<tr>
<td>MORA</td>
<td>Minimum Off-Route Altitude</td>
</tr>
<tr>
<td>MRA</td>
<td>Minimum Reception Altitude</td>
</tr>
<tr>
<td>MSA</td>
<td>Minimum Safe Altitude</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>MTA</td>
<td>Minimum Turning Altitude</td>
</tr>
<tr>
<td>MTR</td>
<td>Military Training Route</td>
</tr>
<tr>
<td>MVA</td>
<td>Minimum Vector Altitude</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NA</td>
<td>Not Authorized</td>
</tr>
<tr>
<td>NAAS</td>
<td>Naval Auxiliary Air Station</td>
</tr>
<tr>
<td>NAS</td>
<td>Naval Air Station</td>
</tr>
<tr>
<td>NASS</td>
<td>Naval Air System</td>
</tr>
<tr>
<td>NAV</td>
<td>Naval Air Facility</td>
</tr>
<tr>
<td>NAVAID</td>
<td>Navigational Aid (Ground based)</td>
</tr>
<tr>
<td>NDB</td>
<td>Non-Directional Radiobeacon</td>
</tr>
<tr>
<td>NextGen</td>
<td>Next Generation Air Transportation System</td>
</tr>
<tr>
<td>NFDC</td>
<td>National Flight Data Center</td>
</tr>
<tr>
<td>NFPO</td>
<td>National Flight Procedures Office</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Mile</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NO A/G</td>
<td>No Air-to-Ground Communication</td>
</tr>
<tr>
<td>NTAP</td>
<td>Notices to Airman Publication</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>O</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>OBS</td>
<td>Omni Bearing Selector</td>
</tr>
<tr>
<td>OCA</td>
<td>Ocean Control Area</td>
</tr>
<tr>
<td>OCS</td>
<td>Obstacle Clearance Surface</td>
</tr>
<tr>
<td>ODP</td>
<td>Obstacle Departure Procedure</td>
</tr>
<tr>
<td>OM</td>
<td>Outer Marker</td>
</tr>
<tr>
<td>OROCA</td>
<td>Off Route Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>P</td>
<td>Precision Approach</td>
</tr>
<tr>
<td>PAR</td>
<td>Precision Approach Radar</td>
</tr>
<tr>
<td>PBN</td>
<td>Performance-Based Navigation</td>
</tr>
<tr>
<td>PRM</td>
<td>Precision Runway Monitor</td>
</tr>
<tr>
<td>PT</td>
<td>Procedure Turn</td>
</tr>
<tr>
<td>PTP</td>
<td>Point-to-Point</td>
</tr>
<tr>
<td>Pvt</td>
<td>Private</td>
</tr>
</tbody>
</table>
R
R - Radial
R - Receive
R - Restricted Area (Special Use Airspace)
RCO - Remote Communications Outlet
RF - Radius-to-Fix
RNAV - Area Navigation
RNP - Required Navigation Performance
RNP AR - Required Navigation Performance Authorization Required
ROC - Required Obstacle Clearance
RP - Right Pattern
RVR - Runway Visual Range
RVSM - Reduced Vertical Separation Minimum
Rwy - Runway

S
S - South
SAAAR - Special Aircraft and Aircrew Authorization Required
SAAR - Special Aircraft and Aircrew Requirements
SATNAV - Satellite Navigation
SDF - Simplified Directional Facility
SER - Start End of Runway
SFAR - Special Flight Rules Area
SFC - Surface
SFRA - Special Flight Rules Area
SIAPs - Standard Instrument Approach Procedures
SID - Standard Instrument Departure
SM - Statute Mile
SMAR - Special Military Activity Routes
SMGCS - Surface Movement Guidance and Control System
SOIA - Simultaneous Offset Instrument Approaches
SSV - Standard Service Volume
STAR - Standard Terminal Arrival Procedure
SUA - Special Use Airspace
SVFR - Special Visual Flight Rules

T
T - Transmit
TA - Travel Advisory
TAA - Terminal Arrival Area
TAC - Terminal Area Chart
TACAN - Tactical Air Navigation
TAS - True Air Speed
TCA - Terminal Control Areas (Canada)
TCH - Threshold Crossing Height
TDZ - Touchdown Zone
TDZE - Touchdown Zone Elevation
TDZL - Touchdown Zone Lights
TDZ/CL - Touchdown Zone/Centerline Lights
TERPS - U.S. Standard for Terminal Instrument Procedures
TFR - Temporary Flight Restriction
TIBS - Telephone Information Briefing Service
TIS-B - Traffic Information Service - Broadcast
TOC - Top of Climb
TOD - Top of Descent
TODA - Takeoff Distance Available
TOGA - Takeoff/Go Around
TORA - Takeoff Runway Available
TPP - Terminal Procedures Publication
TRSA - Terminal Radar Service Area
TWR - Tower

U
UC - Under Construction
UHF - Ultra High Frequency
UIR - Upper Information Region
UNICOM - Universal Communications
U.S. - United States
USA - United States Army
USAF - United States Air Force
USCG - United States Coast Guard
UTA - Upper Control Area

V
VCOA - Visual Climb Over Airport / Airfield
VDA - Vertical Descent Angle
VDP - Visual Decent Point
VFR - Visual Flight Rules
VGSI - Visual Glide Slope Indicator
VHF - Very High Frequency
VMC - Visual Meteorological Conditions
VNAV - Vertical Navigation
VPA - Vertical Path Angle
VR - Visual Route (Military)

W
W - Warning Area (Special Use Airspace)
W - West
WAAS - Wide-Area Augmentation System
WAC - World Aeronautical Chart
WP - Waypoint
WX CAM - Weather Camera (Alaska)