This Chart Supplement is a Civil Flight Information Publication updated every eight weeks by the U.S. Department of Transportation, Federal Aviation Administration, Aeronautical Information Services, http://www.faa.gov/go/ais.

It is designed for use with Flight Information Publication Enroute Charts, and the Sectional Aeronautical Chart covering the State of Hawaii and that area of the Pacific served by U.S. facilities.

This Chart Supplement contains an Airport/Facility Directory, ATC procedures and terminal SID, STAR and IAP charts applicable to the Pacific area.

The official ATC procedures for operating in the Pacific, outside sovereign US airspace are prescribed by ICAO and are contained in ICAO documents 4444, 7030 and Annexes 2 and 11.

CORRECTIONS, COMMENTS, AND/OR PROCUREMENT

CRITICAL information such as equipment malfunction, abnormal field conditions, hazards to flight, etc., should be reported as soon as possible. NOTE: Requests for the creation or revision to Airport Diagrams should be in accordance with FAA Order 7910.4.

FOR COMMENTS OR CORRECTIONS: https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/

FAA, Aeronautical Information Services
1305 East West Highway
SSMC-4 Suite 4400
Silver Spring, MD 20910-3281
Telephone 1–800–638–8972

NOTICE: Changes must be received by Aeronautical Information Services as soon as possible but not later than the "cut-off" dates listed below to assure publication on the desired effective date. Information cut-off dates that fall on a federal holiday must be received the previous work day.

FOR PROCUREMENT:

For digital products, visit our website at:
http://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/

For a list of approved FAA Print Providers, visit our website at:
http://www.faa.gov/air_traffic/flight_info/aeronav/print_providers/

The following publications for use in the Pacific area are available from the FAA, Aeronautical Information Services:

- **CHART SUPPLEMENT PACIFIC.** This supplement is issued every 56 days.
- **HAWAIIAN ISLAND–MARIANA ISLANDS SECTIONAL CHART.** This chart is issued every 56 days.
- **NORTH PACIFIC OCEAN ROUTE CHARTS.** Charts are issued every 56 days at 1:12,000,000 composite or four 1:7,000,000 area charts.
- **IFR ENROUTE PACIFIC OCEAN AND HAWAIIAN ISLAND CHART.** Available from the National Geospatial–Intelligence Agency, provides coverage of Pacific areas served by US facilities.
 - NGA Combat Support Center, ATTN: DDCP
 - Washington, D.C. 20315–0020
 - Telephone (301) 227–2495 or Toll Free 1–800–826–0342

AMENDMENT NOTICE

A change notice will only be issued for safety considerations such as when an amended or original instrument approach procedure is issued.

UPON RECEIPT, THE AMENDMENT NOTICE SHOULD BE ATTACHED TO THIS PAGE SO THAT USERS HAVE ALL SIGNIFICANT CHANGES AVAILABLE.

This Airport/Facility Directory comprises part of the following sections of the United States Aeronautical Information Publication (AIP): GEN, AGA 3, COM 2.
GENERAL INFORMATION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Inside Front Cover</td>
</tr>
<tr>
<td>SECTION 1: AIRPORT/FACILITY DIRECTORY LEGEND</td>
<td>2</td>
</tr>
<tr>
<td>Airport Locator Index</td>
<td>10</td>
</tr>
<tr>
<td>SECTION 2: AIRPORT/FACILITY DIRECTORY</td>
<td>30</td>
</tr>
<tr>
<td>American Samoa</td>
<td>31</td>
</tr>
<tr>
<td>Federated States Of Micronesia</td>
<td>33</td>
</tr>
<tr>
<td>Guam</td>
<td>36</td>
</tr>
<tr>
<td>Hawaii</td>
<td>37</td>
</tr>
<tr>
<td>Kiribati</td>
<td>55</td>
</tr>
<tr>
<td>Marshall Islands</td>
<td>56</td>
</tr>
<tr>
<td>Midway Atoll</td>
<td>60</td>
</tr>
<tr>
<td>Northern Mariana Islands</td>
<td>61</td>
</tr>
<tr>
<td>Palau</td>
<td>64</td>
</tr>
<tr>
<td>Wake Island</td>
<td>65</td>
</tr>
<tr>
<td>SECTION 3: NOTICES</td>
<td></td>
</tr>
<tr>
<td>Special Notices</td>
<td>66</td>
</tr>
<tr>
<td>General Notices</td>
<td>67</td>
</tr>
<tr>
<td>Area Notices</td>
<td>71</td>
</tr>
<tr>
<td>SECTION 4: ASSOCIATED DATA</td>
<td></td>
</tr>
<tr>
<td>ICAO International Phonetic Alphabet/morse Code</td>
<td>112</td>
</tr>
<tr>
<td>Radio Navigational Aids By Identifier</td>
<td>113</td>
</tr>
<tr>
<td>VOR Receiver Checkpoints and VOR Test Facilities</td>
<td>113</td>
</tr>
<tr>
<td>San Francisco RADIO</td>
<td>114</td>
</tr>
<tr>
<td>Parachute Jumping Areas</td>
<td>115</td>
</tr>
<tr>
<td>Special Use Airspace</td>
<td>115</td>
</tr>
<tr>
<td>Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR)</td>
<td>118</td>
</tr>
<tr>
<td>Flight Service Stations & National Weather Service Offices</td>
<td>122</td>
</tr>
<tr>
<td>Key Air Traffic Facilities</td>
<td>123</td>
</tr>
<tr>
<td>Military Training Routes</td>
<td>125</td>
</tr>
<tr>
<td>Conversion Tables</td>
<td>127</td>
</tr>
<tr>
<td>Hot Spots</td>
<td>129</td>
</tr>
<tr>
<td>SECTION 5: PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>Flight Plans</td>
<td>131</td>
</tr>
<tr>
<td>Altimeter Setting Oakland Oceanic FIR</td>
<td>133</td>
</tr>
<tr>
<td>Air Traffic Control Radar Beacon System (ATCRBS)</td>
<td>133</td>
</tr>
<tr>
<td>Oceanic Position Reporting Procedures</td>
<td>133</td>
</tr>
<tr>
<td>Climb Times/change Of Flight Level</td>
<td>135</td>
</tr>
<tr>
<td>Class C Airspace</td>
<td>136</td>
</tr>
<tr>
<td>Emergency Security Control of Air Traffic (ESCAT) Procedures</td>
<td>136</td>
</tr>
<tr>
<td>National Security and Air Defense Identification Zones (ADIZ)</td>
<td>137</td>
</tr>
<tr>
<td>SECTION 6: EMERGENCY PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>Interception Signals ICAO Standard</td>
<td>142</td>
</tr>
<tr>
<td>Search And Rescue</td>
<td>144</td>
</tr>
<tr>
<td>Emergency Procedures</td>
<td>146</td>
</tr>
<tr>
<td>Emergency Signals</td>
<td>147</td>
</tr>
<tr>
<td>SECTION 7: TERMINAL PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>Table of Contents</td>
<td>149</td>
</tr>
<tr>
<td>POSITION REPORTS</td>
<td>Back Cover</td>
</tr>
</tbody>
</table>
For additional FAA approved abbreviations/acronyms please see FAA Order JO 7340.2 —Contractions

Abbreviation Description
A/G airground
AAF Army Air Field
AAS Airport Advisory Service
AB Airbase
abm abeam
ABn Aerodrome Beacon
abv above
ACC Air Combat Command Area Control Center
acct aircraft
ACLS Automatic Carrier Landing System
ACN Aircraft Classification Number
ACR Aircraft Classification Rating
act activity
ACWS Aircraft Control and Warning Squadron
ADA Advisory Area
ADCC Air Defense Control Center
ADCUS Advise Customs
addn addition
ADF Automatic Direction Finder
adj adjacent
admin administration
ADR Advisory Route
adv advise
advsy advisory
AEIS Aeronautical Enroute Information Service
AER approach end rwy
AFA Army Flight Activity
AFB Air Force Base
afct affect
AFFF Aqueous Film Forming Foam
AFHP Air Force Heliport
AFIS Automatic Flight Information Service
afld field
AFOD Army Flight Operations Detachment
AFR Air Force Regulation
AFRC Armed Forces Reserve Center/Air Force Reserve Command
AFRS American Forces Radio Stations
AFS Air Force Station
AFTN Aeronautical Fixed Telecommunication Network
AG Agriculture
A–G, A–GEAR Arresting Gear
agcy Agency
AGL above ground level
AHP Army hq
AID Airport Information Desk
AIS Aeronautical Information Services
AL Approach and Landing Chart
ALF Auxiliary Landing Field
ALS Approach Light System
ALSF–1 High Intensity ALS Category I configuration with sequenced Flashers (code)
ALSF–2 High Intensity ALS Category II configuration with sequenced Flashers (code)
GENERAL INFORMATION

Abbreviation Description
AvGas Aviation gasoline
avn aviationAvOilaviation oil
AWOS Automatic Weather Observing System
AWSS Automated Weather Sensor System
awt await
awy airway
az azimuth
BA braking action
BASH Bird Aircraft Strike Hazard
BC back course
bcn beacon
bcst broadcast
bdry boundary
bldg building
blkd blocked
blo, blw below
BOQ Bachelor Officers Quarters
brg bearing
bth between
bus business
byd beyond
C Commercial Circuit (Telephone)
CAC Centralized Approach Control
cap capacity
cat category
CAT Clear Air Turbulence
CCW or c/min/w counterclockwise
cell ceiling
CERAP Center Radar Approach Control
CG Coast Guard
CGAF Coast Guard Air Facility
CGAS Coast Guard Air Station
CH, chan channel
CHAPI Chase Helicopter Approach Path Indicator
chg change
cht chart
cir circle, circling
CIV, civ Civil, civil, civilian
ck check
CL Centerline Lighting System
c class
crcl clearance
clsd closed
CNATRA Chief of Naval Air Training
cnl cancel
ctr center
cntrln centerline
Co Company, County
CO Commanding Officer
comm communication
com command
Comdr Commander
coml commercial
compl compulsory
comsn commission
conc concrete
cond condition
cnst construction
cont continue
CONUS Continental United States
convl conventional
coord coordinate
Abbreviation Description
copter helicopter
corr correct
CPDLC Controller Pilot Data Link Communication
crdr corridor
crs cross
CRP Compulsory Reporting Point
crs course
CS call sign
CSTMS Customs
CTA Control Area
CTAF Common Traffic Advisory Frequency
ctc contact
ctl control
ctn caution
CTLZ Control Zone
CVFR Controlled Visual Flight Rules Areas
CW Clockwise, Continuous Wave, Carrier Wave
daig dayight
D–ATIS Digital Automatic Terminal Information Service
dayl daylight
db decibel
DCL Departure Clearance
Dec December
decom decommission
deg degree
del delivery
dep depart
DEP Departure Control
dest destination
det detachment
DF Direction Finder
DH Decision Height
DIAP DoD Instrument Approach Procedure
dirc directional
disem disseminate
disp display
dist district, distance
div division
DL Direct Line to FSS
dlt delete
dly daily
DME Distance Measuring Equipment (UHF standard, TACAN compatible)
DNVT Digital Non–Secure Voice Telephone
DoD Department of Defense
drtc direct
DSN Defense Switching Network (Telephone)
DSN Defense Switching Network
dspldc displaced
DT Daylight Savings Time
dur during
durn duration
DV Distinguished Visitor
E East
each each
EAT Expected Approach Time
ECN Enroute Change Notice
eff effective, effect
E–HA Enroute High Altitude
E–LA Enroute Low Altitude
PAC, 8 SEP 2022 to 3 NOV 2022
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>elt</td>
<td>elevation</td>
</tr>
<tr>
<td>ELT</td>
<td>Emergency Locator Transmitter</td>
</tr>
<tr>
<td>EMAS</td>
<td>Engineered Material Arresting System</td>
</tr>
<tr>
<td>emerg</td>
<td>emergency</td>
</tr>
<tr>
<td>eng</td>
<td>engine</td>
</tr>
<tr>
<td>EOR</td>
<td>End of Runway</td>
</tr>
<tr>
<td>epct</td>
<td>equipment</td>
</tr>
<tr>
<td>ERDA</td>
<td>Energy Research and Development Administration</td>
</tr>
<tr>
<td>E-S</td>
<td>Enroute Supplement</td>
</tr>
<tr>
<td>est</td>
<td>estimate</td>
</tr>
<tr>
<td>estab</td>
<td>establish</td>
</tr>
<tr>
<td>ETA</td>
<td>Estimated Time of Arrival</td>
</tr>
<tr>
<td>ETD</td>
<td>Estimated Time of Departure</td>
</tr>
<tr>
<td>ETE</td>
<td>Estimated Time Enroute</td>
</tr>
<tr>
<td>ETS</td>
<td>European Telephone System</td>
</tr>
<tr>
<td>EUR</td>
<td>European (ICAO Region)</td>
</tr>
<tr>
<td>ev</td>
<td>every</td>
</tr>
<tr>
<td>evac</td>
<td>evacuate</td>
</tr>
<tr>
<td>exc</td>
<td>except</td>
</tr>
<tr>
<td>excld</td>
<td>exclude</td>
</tr>
<tr>
<td>exer</td>
<td>exercise</td>
</tr>
<tr>
<td>exm</td>
<td>exempt</td>
</tr>
<tr>
<td>exp</td>
<td>expect</td>
</tr>
<tr>
<td>extd</td>
<td>extend</td>
</tr>
<tr>
<td>extr</td>
<td>extension</td>
</tr>
<tr>
<td>extv</td>
<td>extensive</td>
</tr>
<tr>
<td>F/W</td>
<td>Fixed Wing</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>fac</td>
<td>facility</td>
</tr>
<tr>
<td>FAWS</td>
<td>Flight Advisory Weather Service</td>
</tr>
<tr>
<td>fax</td>
<td>facsimile</td>
</tr>
<tr>
<td>FBO</td>
<td>Fixed Base Operator</td>
</tr>
<tr>
<td>FCC</td>
<td>Flight Control Center</td>
</tr>
<tr>
<td>FCG</td>
<td>Foreign Clearance Guide</td>
</tr>
<tr>
<td>FCLP</td>
<td>field carrier landing practice</td>
</tr>
<tr>
<td>fcst</td>
<td>forecast</td>
</tr>
<tr>
<td>Feb</td>
<td>February</td>
</tr>
<tr>
<td>FIC</td>
<td>Flight Information Center</td>
</tr>
<tr>
<td>FIH</td>
<td>Flight Information Handbook</td>
</tr>
<tr>
<td>FIR</td>
<td>Flight Information Region</td>
</tr>
<tr>
<td>FIS</td>
<td>Flight Information Service</td>
</tr>
<tr>
<td>FL</td>
<td>flight level</td>
</tr>
<tr>
<td>fld</td>
<td>field</td>
</tr>
<tr>
<td>flg</td>
<td>flashing</td>
</tr>
<tr>
<td>FLIP</td>
<td>Flight Information Publication</td>
</tr>
<tr>
<td>flt</td>
<td>flight</td>
</tr>
<tr>
<td>flw</td>
<td>follow</td>
</tr>
<tr>
<td>FM</td>
<td>Fan Marker, Frequency Modulation</td>
</tr>
<tr>
<td>FOG</td>
<td>Flight Operations Center</td>
</tr>
<tr>
<td>FOD</td>
<td>Foreign Object Damage</td>
</tr>
<tr>
<td>fone</td>
<td>telephone</td>
</tr>
<tr>
<td>FPL</td>
<td>Flight Plan</td>
</tr>
<tr>
<td>fpm</td>
<td>feet per minute</td>
</tr>
<tr>
<td>fr</td>
<td>from</td>
</tr>
<tr>
<td>freq</td>
<td>frequency, frequent</td>
</tr>
<tr>
<td>Fri</td>
<td>Friday</td>
</tr>
<tr>
<td>fmg</td>
<td>firing</td>
</tr>
<tr>
<td>FSS</td>
<td>Flight Service Station</td>
</tr>
<tr>
<td>ft</td>
<td>foot</td>
</tr>
<tr>
<td>ftr</td>
<td>fighter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>Glide Angle</td>
</tr>
<tr>
<td>gal</td>
<td>gallon</td>
</tr>
<tr>
<td>GAT</td>
<td>General Air Traffic (Europe–Asia)</td>
</tr>
<tr>
<td>GCA</td>
<td>Ground Control Approach</td>
</tr>
<tr>
<td>GCO</td>
<td>Ground Communication Outlet</td>
</tr>
<tr>
<td>gldr</td>
<td>glider</td>
</tr>
<tr>
<td>GND</td>
<td>Ground Control</td>
</tr>
<tr>
<td>gnd</td>
<td>ground</td>
</tr>
<tr>
<td>govt</td>
<td>government</td>
</tr>
<tr>
<td>GP</td>
<td>Glide Path</td>
</tr>
<tr>
<td>Gp</td>
<td>Group</td>
</tr>
<tr>
<td>GPl</td>
<td>Ground Point of Intercept</td>
</tr>
<tr>
<td>grad</td>
<td>gradient</td>
</tr>
<tr>
<td>grd</td>
<td>guard</td>
</tr>
<tr>
<td>GS</td>
<td>glide slope</td>
</tr>
<tr>
<td>GWT</td>
<td>gross weight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>H+</td>
</tr>
<tr>
<td>H24</td>
</tr>
<tr>
<td>HAA</td>
</tr>
<tr>
<td>HAL</td>
</tr>
<tr>
<td>HAT</td>
</tr>
<tr>
<td>HAT</td>
</tr>
<tr>
<td>haz</td>
</tr>
<tr>
<td>hgd</td>
</tr>
<tr>
<td>HDTA</td>
</tr>
<tr>
<td>HF</td>
</tr>
<tr>
<td>hgr</td>
</tr>
<tr>
<td>hgt</td>
</tr>
<tr>
<td>hi</td>
</tr>
<tr>
<td>HIRL</td>
</tr>
<tr>
<td>HO</td>
</tr>
<tr>
<td>hol</td>
</tr>
<tr>
<td>HOLF</td>
</tr>
<tr>
<td>hosp</td>
</tr>
<tr>
<td>HQ</td>
</tr>
<tr>
<td>hr</td>
</tr>
<tr>
<td>HS</td>
</tr>
<tr>
<td>hsg</td>
</tr>
<tr>
<td>Hwy</td>
</tr>
<tr>
<td>HW</td>
</tr>
<tr>
<td>hwy</td>
</tr>
<tr>
<td>HX</td>
</tr>
<tr>
<td>Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>IAP</td>
</tr>
<tr>
<td>IAS</td>
</tr>
<tr>
<td>IAW</td>
</tr>
<tr>
<td>ICAO</td>
</tr>
<tr>
<td>ident</td>
</tr>
<tr>
<td>IFF</td>
</tr>
<tr>
<td>IFR</td>
</tr>
<tr>
<td>IFR-S</td>
</tr>
<tr>
<td>ILS</td>
</tr>
<tr>
<td>IM</td>
</tr>
<tr>
<td>IMC</td>
</tr>
<tr>
<td>IMG</td>
</tr>
</tbody>
</table>
GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>immed</td>
<td>immediate</td>
</tr>
<tr>
<td>inbd</td>
<td>inbound</td>
</tr>
<tr>
<td>Inc</td>
<td>Incorporated</td>
</tr>
<tr>
<td>incl</td>
<td>include</td>
</tr>
<tr>
<td>incr</td>
<td>increase</td>
</tr>
<tr>
<td>indef</td>
<td>indefinite</td>
</tr>
<tr>
<td>info</td>
<td>information</td>
</tr>
<tr>
<td>inop</td>
<td>inoperative</td>
</tr>
<tr>
<td>inst</td>
<td>instrument</td>
</tr>
<tr>
<td>instl</td>
<td>install</td>
</tr>
<tr>
<td>intr</td>
<td>instruction</td>
</tr>
<tr>
<td>int</td>
<td>intersection</td>
</tr>
<tr>
<td>intcntl</td>
<td>intercontinental</td>
</tr>
<tr>
<td>intctp</td>
<td>intercept</td>
</tr>
<tr>
<td>intl</td>
<td>international</td>
</tr>
<tr>
<td>intmt</td>
<td>intermittent</td>
</tr>
<tr>
<td>ints</td>
<td>Intense, intensity</td>
</tr>
<tr>
<td>invof</td>
<td>in the vicinity of</td>
</tr>
<tr>
<td>irreg</td>
<td>Irregularly</td>
</tr>
<tr>
<td>Jan</td>
<td>January</td>
</tr>
<tr>
<td>JASU</td>
<td>Jet Aircraft Starting Unit</td>
</tr>
<tr>
<td>JATO</td>
<td>Jet Assisted Take-Off</td>
</tr>
<tr>
<td>JOAP</td>
<td>Joint Oil Analysis Program</td>
</tr>
<tr>
<td>JOSAC</td>
<td>Joint Operational Support Airlift Center</td>
</tr>
<tr>
<td>JRB</td>
<td>Joint Reserve Base</td>
</tr>
<tr>
<td>Jul</td>
<td>July</td>
</tr>
<tr>
<td>Jun</td>
<td>June</td>
</tr>
<tr>
<td>K or Kl</td>
<td>Knots</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>KIAS</td>
<td>Knots Indicated Airspeed</td>
</tr>
<tr>
<td>KLIZ</td>
<td>Korea Limited Identification Zone</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>kw</td>
<td>kilowatt</td>
</tr>
<tr>
<td>L</td>
<td>Local Time</td>
</tr>
<tr>
<td>LAHSO</td>
<td>Land and Hold–Short Operations</td>
</tr>
<tr>
<td>L-AOE</td>
<td>Limited Airport of Entry</td>
</tr>
<tr>
<td>LAWRS</td>
<td>Limited Aviation Weather Reporting Station</td>
</tr>
<tr>
<td>lb, lbs</td>
<td>pound (weight)</td>
</tr>
<tr>
<td>LC</td>
<td>local call</td>
</tr>
<tr>
<td>lcl</td>
<td>local</td>
</tr>
<tr>
<td>LCP</td>
<td>French Peripheral Classification Line</td>
</tr>
<tr>
<td>ltd</td>
<td>located</td>
</tr>
<tr>
<td>lctn</td>
<td>location</td>
</tr>
<tr>
<td>lctr</td>
<td>locator</td>
</tr>
<tr>
<td>LCVASI</td>
<td>Low Cost Visual Approach Slope Indicator</td>
</tr>
<tr>
<td>lcr</td>
<td>localizer</td>
</tr>
<tr>
<td>LD</td>
<td>long distance</td>
</tr>
<tr>
<td>LDA</td>
<td>Landing Distance Available</td>
</tr>
<tr>
<td>ldg</td>
<td>landing</td>
</tr>
<tr>
<td>LDIN</td>
<td>Lead–in Lights</td>
</tr>
<tr>
<td>LDOCF</td>
<td>Long Distance Operations Control Facility</td>
</tr>
<tr>
<td>len</td>
<td>length</td>
</tr>
<tr>
<td>lgt, lgted, lgts</td>
<td>light, lighted, lights</td>
</tr>
<tr>
<td>LIRL</td>
<td>Low Intensity Runway Lights</td>
</tr>
<tr>
<td>LLWAS</td>
<td>Low–Level Wind Shear Alert System</td>
</tr>
<tr>
<td>LLZ</td>
<td>Localizer (Instrument Approach Procedures Identification only)</td>
</tr>
<tr>
<td>LMM</td>
<td>Compass locator at Middle Marker ILS</td>
</tr>
<tr>
<td>LoALT or LA</td>
<td>Low Altitude</td>
</tr>
<tr>
<td>LOC</td>
<td>Localizer</td>
</tr>
<tr>
<td>LOM</td>
<td>Compass locator at Outer Marker ILS</td>
</tr>
<tr>
<td>LR</td>
<td>Long Range, Lead Radial</td>
</tr>
<tr>
<td>LRA</td>
<td>Landing Rights Airport</td>
</tr>
<tr>
<td>LRRS</td>
<td>Long Range RADAR Station</td>
</tr>
<tr>
<td>LSB</td>
<td>lower side band</td>
</tr>
<tr>
<td>ltd</td>
<td>limited</td>
</tr>
<tr>
<td>M</td>
<td>meters, magnetic (after a bearing), Military Circuit (Telephone)</td>
</tr>
<tr>
<td>MACC</td>
<td>Military Area Control Center</td>
</tr>
<tr>
<td>mag</td>
<td>magnetic</td>
</tr>
<tr>
<td>maint</td>
<td>maintain, maintenance</td>
</tr>
<tr>
<td>maj</td>
<td>major</td>
</tr>
<tr>
<td>MALF</td>
<td>Medium Intensity Approach Lighting System</td>
</tr>
<tr>
<td>MALSF</td>
<td>MALF with Sequenced Flashers</td>
</tr>
<tr>
<td>MALSRA</td>
<td>MALF with Runway Alignment Indicator Lights</td>
</tr>
<tr>
<td>Mar</td>
<td>March</td>
</tr>
<tr>
<td>MARA</td>
<td>Military Activity Restricted Area</td>
</tr>
<tr>
<td>MATO</td>
<td>Military Air Traffic Operations</td>
</tr>
<tr>
<td>MATZ</td>
<td>Military Aeronautical Traffic Zone</td>
</tr>
<tr>
<td>max</td>
<td>maximum</td>
</tr>
<tr>
<td>mb</td>
<td>millibars</td>
</tr>
<tr>
<td>MCAC</td>
<td>Military Common Area Control</td>
</tr>
<tr>
<td>MCAF</td>
<td>Marine Corps Air Facility</td>
</tr>
<tr>
<td>MCALF</td>
<td>Marine Corps Auxiliary Landing Field</td>
</tr>
<tr>
<td>MCAS</td>
<td>Marine Corps Air Station</td>
</tr>
<tr>
<td>MCB</td>
<td>Marine Corps Base</td>
</tr>
<tr>
<td>MCC</td>
<td>Military Climatic Corridor</td>
</tr>
<tr>
<td>MCOLF</td>
<td>Marine Corps Outlying Field</td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Descent Altitude</td>
</tr>
<tr>
<td>MEA</td>
<td>Minimum Enroute Altitude</td>
</tr>
<tr>
<td>med</td>
<td>medium</td>
</tr>
<tr>
<td>MEHT</td>
<td>Minimum Eye Height over Threshold</td>
</tr>
<tr>
<td>mem</td>
<td>memorial</td>
</tr>
<tr>
<td>MET</td>
<td>Meteorological, Meteorology</td>
</tr>
<tr>
<td>METAR</td>
<td>Aviation Routine Weather Report (in international MET figure code)</td>
</tr>
<tr>
<td>METRO</td>
<td>Pilot–to–Metro voice cell</td>
</tr>
<tr>
<td>MF</td>
<td>Medium Frequency (300 to 3000 KHz), Mandatory Frequency (Canada)</td>
</tr>
<tr>
<td>MFA</td>
<td>Minimum Flight Altitude</td>
</tr>
<tr>
<td>mgmt</td>
<td>Management</td>
</tr>
<tr>
<td>mgr</td>
<td>manager</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>mi</td>
<td>mile</td>
</tr>
<tr>
<td>MID/ASIA</td>
<td>Middle East/Asia (ICAO Region)</td>
</tr>
<tr>
<td>MJU</td>
<td>Meaconing, Intrusion, Jamming, and Interference</td>
</tr>
<tr>
<td>Mil, mil</td>
<td>military</td>
</tr>
<tr>
<td>min</td>
<td>minimum, minute</td>
</tr>
<tr>
<td>MIRL</td>
<td>Medium Intensity Runway Lights</td>
</tr>
<tr>
<td>misl</td>
<td>missile</td>
</tr>
<tr>
<td>mkr</td>
<td>marker (beacon)</td>
</tr>
<tr>
<td>MM</td>
<td>Middle Marker of ILS</td>
</tr>
<tr>
<td>mnt</td>
<td>monitor</td>
</tr>
<tr>
<td>MOA</td>
<td>Military Operations Area</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MOCA</td>
<td>Minimum Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>mod</td>
<td>modify</td>
</tr>
<tr>
<td>MOG</td>
<td>Maximum (aircraft) on the Ground</td>
</tr>
<tr>
<td>MON</td>
<td>Minimum Operational Network</td>
</tr>
<tr>
<td>Mon</td>
<td>Monday</td>
</tr>
<tr>
<td>MP</td>
<td>Maintenance Period</td>
</tr>
<tr>
<td>MR</td>
<td>Medium Range</td>
</tr>
<tr>
<td>MRA</td>
<td>Minimum Reception Altitude</td>
</tr>
<tr>
<td>mrk</td>
<td>mark, marker</td>
</tr>
<tr>
<td>MSAW</td>
<td>minimum safe altitude warning</td>
</tr>
<tr>
<td>msg</td>
<td>message</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>msn</td>
<td>Mission</td>
</tr>
<tr>
<td>mt</td>
<td>mount, mountain</td>
</tr>
<tr>
<td>MTAF</td>
<td>Mandatory Traffic Advisory Frequency</td>
</tr>
<tr>
<td>MTCA</td>
<td>Military Terminal Control Area</td>
</tr>
<tr>
<td>mthly</td>
<td>monthly</td>
</tr>
<tr>
<td>MUAC</td>
<td>Military Upper Area Control</td>
</tr>
<tr>
<td>muni</td>
<td>municipal</td>
</tr>
<tr>
<td>MWARA</td>
<td>Major World Air Route Area</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>N/A</td>
<td>not applicable</td>
</tr>
<tr>
<td>NA</td>
<td>not authorized (For Instrument Approach Procedure take–off and alternate MINIMA only)</td>
</tr>
<tr>
<td>NAAS</td>
<td>Naval Auxiliary Air Station</td>
</tr>
<tr>
<td>NADC</td>
<td>Naval Air Development Center</td>
</tr>
<tr>
<td>NADEP</td>
<td>Naval Air Depot</td>
</tr>
<tr>
<td>NAEC</td>
<td>Naval Air Engineering Center</td>
</tr>
<tr>
<td>NAES</td>
<td>Naval Air Engineering Station</td>
</tr>
<tr>
<td>NAF</td>
<td>Naval Air Facility</td>
</tr>
<tr>
<td>NALCO</td>
<td>Naval Air Logistics Control Office</td>
</tr>
<tr>
<td>NALF</td>
<td>Naval Auxiliary Landing Field</td>
</tr>
<tr>
<td>NALO</td>
<td>Navy Air Logistics Office</td>
</tr>
<tr>
<td>NAS</td>
<td>Naval Air Station</td>
</tr>
<tr>
<td>NAT</td>
<td>North Atlantic (ICAO Region)</td>
</tr>
<tr>
<td>natl</td>
<td>national</td>
</tr>
<tr>
<td>nav</td>
<td>navigation</td>
</tr>
<tr>
<td>navaid</td>
<td>navigation aid</td>
</tr>
<tr>
<td>NAVMTO</td>
<td>Navy Material Transportation Office</td>
</tr>
<tr>
<td>NAVSO</td>
<td>Naval Service Office</td>
</tr>
<tr>
<td>NAWC</td>
<td>Naval Air Warfare Center</td>
</tr>
<tr>
<td>NEWS</td>
<td>Naval Explosives Weight</td>
</tr>
<tr>
<td>mnt</td>
<td>night</td>
</tr>
<tr>
<td>NM</td>
<td>nautical miles</td>
</tr>
<tr>
<td>nml</td>
<td>normal</td>
</tr>
<tr>
<td>NMR</td>
<td>nautical mile radius</td>
</tr>
<tr>
<td>No or Nr</td>
<td>navigation</td>
</tr>
<tr>
<td>NOLF</td>
<td>Naval Outlying Field</td>
</tr>
<tr>
<td>NORDO</td>
<td>Lost communications or no radio</td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice to Air Missions</td>
</tr>
<tr>
<td>Nov</td>
<td>November</td>
</tr>
<tr>
<td>npi</td>
<td>non precision instrument</td>
</tr>
<tr>
<td>Nr or No</td>
<td>number</td>
</tr>
<tr>
<td>NS</td>
<td>Naval Station</td>
</tr>
<tr>
<td>NS ABMT</td>
<td>Noise Abatement</td>
</tr>
<tr>
<td>NSA</td>
<td>Naval Support Activity</td>
</tr>
<tr>
<td>NSF</td>
<td>Naval Support Facility</td>
</tr>
<tr>
<td>NSTD</td>
<td>nonstandard</td>
</tr>
<tr>
<td>ntc</td>
<td>notice</td>
</tr>
<tr>
<td>NVD</td>
<td>Night Vision Devices</td>
</tr>
<tr>
<td>NVG</td>
<td>Night Vision Goggles</td>
</tr>
<tr>
<td>NW</td>
<td>Northwest</td>
</tr>
<tr>
<td>NWC</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>O/A</td>
<td>On or about</td>
</tr>
<tr>
<td>O/S</td>
<td>out of service</td>
</tr>
<tr>
<td>O/R</td>
<td>On Request</td>
</tr>
<tr>
<td>OAT</td>
<td>Operational Air Traffic</td>
</tr>
<tr>
<td>obsn</td>
<td>observation</td>
</tr>
<tr>
<td>obst</td>
<td>obstruction</td>
</tr>
<tr>
<td>OCA</td>
<td>Oceanic Control Area</td>
</tr>
<tr>
<td>ocnl</td>
<td>occasional</td>
</tr>
<tr>
<td>Oct</td>
<td>October</td>
</tr>
<tr>
<td>ODALS</td>
<td>Omnidirectional Approach Lighting System</td>
</tr>
<tr>
<td>ODO</td>
<td>Operations Duty Officer</td>
</tr>
<tr>
<td>offl</td>
<td>official</td>
</tr>
<tr>
<td>OIC</td>
<td>Officer In Charge</td>
</tr>
<tr>
<td>OLF</td>
<td>Outlying Field</td>
</tr>
<tr>
<td>OLS</td>
<td>Optical Landing System</td>
</tr>
<tr>
<td>OM</td>
<td>Outer Marker, ILS</td>
</tr>
<tr>
<td>opr</td>
<td>operate, operator, operational</td>
</tr>
<tr>
<td>OPS, ops</td>
<td>operations</td>
</tr>
<tr>
<td>orig</td>
<td>original</td>
</tr>
<tr>
<td>OROCA</td>
<td>Off Route Obstruction Clearance Altitude</td>
</tr>
<tr>
<td>ORTCA</td>
<td>Off Route Terrain Clearance Altitude</td>
</tr>
<tr>
<td>OT</td>
<td>other times</td>
</tr>
<tr>
<td>OTS</td>
<td>out of service</td>
</tr>
<tr>
<td>outbd</td>
<td>outbound</td>
</tr>
<tr>
<td>ovft</td>
<td>overrun</td>
</tr>
<tr>
<td>ox</td>
<td>oxygen</td>
</tr>
<tr>
<td>P/L</td>
<td>plain language</td>
</tr>
<tr>
<td>PAC</td>
<td>Pacific (ICAO Region)</td>
</tr>
<tr>
<td>PAEW</td>
<td>personnel and equipment working</td>
</tr>
<tr>
<td>PALS</td>
<td>Precision Approach and Landing System (NAVY)</td>
</tr>
<tr>
<td>PAPI</td>
<td>Precision Approach Path Indicator</td>
</tr>
<tr>
<td>PAR</td>
<td>Precision Approach Radar</td>
</tr>
<tr>
<td>para</td>
<td>paragraph</td>
</tr>
<tr>
<td>parl</td>
<td>parallel</td>
</tr>
<tr>
<td>pat</td>
<td>pattern</td>
</tr>
<tr>
<td>PAX</td>
<td>Passenger</td>
</tr>
<tr>
<td>PCL</td>
<td>pilot controlled lighting</td>
</tr>
<tr>
<td>PCN</td>
<td>Pavement Classification Number</td>
</tr>
<tr>
<td>PCR</td>
<td>Pavement Classification Rating</td>
</tr>
<tr>
<td>PDC</td>
<td>Pre–Departure Clearance</td>
</tr>
<tr>
<td>pent</td>
<td>penetrate</td>
</tr>
<tr>
<td>perms</td>
<td>permission</td>
</tr>
<tr>
<td>pers</td>
<td>personnel</td>
</tr>
<tr>
<td>PFC</td>
<td>Porous Friction Courses</td>
</tr>
<tr>
<td>PJE</td>
<td>Parachuting Activities/Exercises</td>
</tr>
<tr>
<td>p-line</td>
<td>power line</td>
</tr>
<tr>
<td>PM</td>
<td>Post meridian, noon til midnight</td>
</tr>
<tr>
<td>PMRF</td>
<td>Pacific Missile Range Facility</td>
</tr>
<tr>
<td>PMSV</td>
<td>Pilot-to–Metro Service</td>
</tr>
<tr>
<td>PN</td>
<td>prior notice</td>
</tr>
<tr>
<td>POB</td>
<td>persons on board</td>
</tr>
<tr>
<td>POL</td>
<td>Petrol, Oils and Lubricants</td>
</tr>
<tr>
<td>posn</td>
<td>position</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PPR</td>
<td>prior permission required</td>
</tr>
<tr>
<td>prcht</td>
<td>parachute</td>
</tr>
<tr>
<td>pref</td>
<td>prefer</td>
</tr>
<tr>
<td>prev</td>
<td>previous</td>
</tr>
<tr>
<td>prim</td>
<td>primary</td>
</tr>
<tr>
<td>prk</td>
<td>park</td>
</tr>
<tr>
<td>PRM</td>
<td>Precision Runway Monitor</td>
</tr>
<tr>
<td>pro</td>
<td>procedure</td>
</tr>
<tr>
<td>proh</td>
<td>prohibited</td>
</tr>
<tr>
<td>pt</td>
<td>point</td>
</tr>
<tr>
<td>PTD</td>
<td>Pilot to Dispatcher</td>
</tr>
<tr>
<td>pub</td>
<td>publication</td>
</tr>
<tr>
<td>publ</td>
<td>publish</td>
</tr>
<tr>
<td>PVASI</td>
<td>Pulsating Visual Approach Slope Indicator</td>
</tr>
<tr>
<td>pvt</td>
<td>private</td>
</tr>
<tr>
<td>pwr</td>
<td>power</td>
</tr>
<tr>
<td>QFE</td>
<td>Altimeter Setting above station</td>
</tr>
<tr>
<td>QNE</td>
<td>Altimeter Setting of 29.92 inches which provides height above standard datum plane</td>
</tr>
<tr>
<td>QNH</td>
<td>Altimeter Setting which provides height above mean sea level</td>
</tr>
<tr>
<td>qtrs</td>
<td>quarters</td>
</tr>
<tr>
<td>quad</td>
<td>quadrant</td>
</tr>
<tr>
<td>R/T</td>
<td>Radiotelephony</td>
</tr>
<tr>
<td>R/W</td>
<td>Rotary/Wing</td>
</tr>
<tr>
<td>RACON</td>
<td>Radar Beacon</td>
</tr>
<tr>
<td>rad</td>
<td>radius, radial</td>
</tr>
<tr>
<td>RAIL</td>
<td>Runway Alignment Indicator Lights</td>
</tr>
<tr>
<td>RAMCC</td>
<td>Regional Air Movement Control Center</td>
</tr>
<tr>
<td>R–AE</td>
<td>Regular Airport of Entry</td>
</tr>
<tr>
<td>RAPCON</td>
<td>Radar Approach Control (USAF)</td>
</tr>
<tr>
<td>RATCF</td>
<td>Radar Air Traffic Control Facility (Navy)</td>
</tr>
<tr>
<td>RCAG</td>
<td>Remote Center Air to Ground Facility</td>
</tr>
<tr>
<td>RCAGL</td>
<td>Remote Center Air to Ground Facility Long Range</td>
</tr>
<tr>
<td>RCL</td>
<td>runway centerline</td>
</tr>
<tr>
<td>RCLS</td>
<td>Runway Centerline Light System</td>
</tr>
<tr>
<td>RCO</td>
<td>Remote Communications Outlet</td>
</tr>
<tr>
<td>rctp</td>
<td>reception</td>
</tr>
<tr>
<td>RCR</td>
<td>Runway Condition Reading</td>
</tr>
<tr>
<td>rcv</td>
<td>receive</td>
</tr>
<tr>
<td>rcrv</td>
<td>receiver</td>
</tr>
<tr>
<td>rdo</td>
<td>radio</td>
</tr>
<tr>
<td>reconst</td>
<td>reconstruct</td>
</tr>
<tr>
<td>refu</td>
<td>refueling</td>
</tr>
<tr>
<td>reg</td>
<td>regulation, regular</td>
</tr>
<tr>
<td>REIL</td>
<td>Runway End Identifier Lights</td>
</tr>
<tr>
<td>rel</td>
<td>reliable</td>
</tr>
<tr>
<td>relctd</td>
<td>relocated</td>
</tr>
<tr>
<td>REP</td>
<td>Reporting Point</td>
</tr>
<tr>
<td>req</td>
<td>request</td>
</tr>
<tr>
<td>RETIL</td>
<td>Rapid Exit Taxiway Indicator Light</td>
</tr>
<tr>
<td>Rgn</td>
<td>Region</td>
</tr>
<tr>
<td>Rgm</td>
<td>Regional</td>
</tr>
<tr>
<td>rgt</td>
<td>right</td>
</tr>
<tr>
<td>rgt tfc</td>
<td>right traffic</td>
</tr>
<tr>
<td>rgl</td>
<td>realigned</td>
</tr>
<tr>
<td>RLLS</td>
<td>Runway Lead-in Light System</td>
</tr>
<tr>
<td>rmk</td>
<td>remark</td>
</tr>
<tr>
<td>mg</td>
<td>range, radio range</td>
</tr>
<tr>
<td>RNP</td>
<td>Required Navigation Performance</td>
</tr>
</tbody>
</table>

Abbreviation | Description

- **RON**: Remain Overnight
- **Rot Lt or Bcn**: Rotating Light or Beacon
- **RPI**: Runway Point of Intercept
- **rt**: report
- **rqr**: require
- **RR**: Railroad
- **RRP**: Runway Reference Point
- **RSC**: Runway Surface Condition
- **RSDU**: Radar Storm Detection Unit
- **RSE**: Runway Starter Extension/Startter Strip
- **RSRS**: Reduced Same Runway Separation
- **rstd**: restricted
- **rte**: route
- **ruf**: rough
- **RVR**: Runway Visual Range
- **RVSM**: Reduced Vertical Separation Minima
- **rwy**: runway
- **S**: South
- **S/D**: Seadrome
- **SALS**: Short Approach Lighting System
- **SAR**: Search and Rescue
- **Sat**: Saturday
- **SAVASI**: Simplified Abbreviated Visual Approach Slope Indicator
- **SAWRS**: Supplement Aviation Weather Reporting Station
- **sby**: standby
- **Sched**: scheduled services
- **sctr**: sector
- **SDF**: Simplified Directional Facility
- **SE**: Southeast
- **sec**: second, section
- **secd**: secondary
- **SELCAL**: Selective Calling System
- **SELF**: Strategic Expeditionary Landing Field
- **SEng**: Single Engine
- **Sep**: September
- **SFA**: Single Frequency Approach
- **SFB**: Space Force Base
- **sfc**: surface
- **SFL**: Sequence Flashing Lights
- **SFRA**: Special Flight Rules Area
- **SID**: Standard Instrument Departure
- **SIDA**: Secure Identification Display Area
- **SIF**: Selective Identification Feature
- **sked**: schedule
- **SM**: statute miles
- **SOAP**: Spectrometric Oil Analysis Program
- **SOF**: Supervisor of Flying
- **SPB**: Seaplane Base
- **SR**: sunrise
- **SRE**: Surveillance Radar Element of GCA (Instrument Approach Procedures Identification only)
- **SS**: sunset
- **SSALS/R**: Simplified Short Approach Lighting System/with RAIL
- **SSB**: Single Sideband
- **SSR**: Secondary Surveillance Radar
- **STA**: Straight-in Approach
- **std**: standard
- **str**: station
- **stor**: storage
- **str–in**: Straight-in
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stu</td>
<td>student</td>
</tr>
<tr>
<td>subj</td>
<td>subject</td>
</tr>
<tr>
<td>surv</td>
<td>survival, surveillance</td>
</tr>
<tr>
<td>sum</td>
<td>summer</td>
</tr>
<tr>
<td>Sun</td>
<td>Sunday</td>
</tr>
<tr>
<td>sur</td>
<td>surround</td>
</tr>
<tr>
<td>susp</td>
<td>suspended</td>
</tr>
<tr>
<td>svc</td>
<td>service</td>
</tr>
<tr>
<td>svcg</td>
<td>servicing</td>
</tr>
<tr>
<td>SW</td>
<td>Southwest</td>
</tr>
<tr>
<td>sys</td>
<td>system</td>
</tr>
<tr>
<td>TA</td>
<td>Transition Altitude</td>
</tr>
<tr>
<td>TAC</td>
<td>Tactical Air Command</td>
</tr>
<tr>
<td>TAF</td>
<td>Aerodrome (terminal or alternate) forecast in abbreviated form</td>
</tr>
<tr>
<td>TALCE</td>
<td>Tanker Aircraft Control Element</td>
</tr>
<tr>
<td>TCA</td>
<td>Terminal Control Area</td>
</tr>
<tr>
<td>TCH</td>
<td>Threshold Crossing Height</td>
</tr>
<tr>
<td>TCTA</td>
<td>Transcontinental Control Area</td>
</tr>
<tr>
<td>TD</td>
<td>Touchdown</td>
</tr>
<tr>
<td>TDWR</td>
<td>Terminal Doppler Weather Radar</td>
</tr>
<tr>
<td>TDZ</td>
<td>Touchdown Zone</td>
</tr>
<tr>
<td>TDZL</td>
<td>Touchdown Zone Lights</td>
</tr>
<tr>
<td>ifc</td>
<td>traffic</td>
</tr>
<tr>
<td>1hd</td>
<td>threshold</td>
</tr>
<tr>
<td>thou</td>
<td>thousand</td>
</tr>
<tr>
<td>thru</td>
<td>through</td>
</tr>
<tr>
<td>Thu</td>
<td>Thursday</td>
</tr>
<tr>
<td>til</td>
<td>until</td>
</tr>
<tr>
<td>tkl</td>
<td>take-off</td>
</tr>
<tr>
<td>Tlv</td>
<td>Transition Level</td>
</tr>
<tr>
<td>tmpy</td>
<td>temporary</td>
</tr>
<tr>
<td>TODA</td>
<td>Take-Off Distance Available</td>
</tr>
<tr>
<td>TORA</td>
<td>Take-Off Run Available</td>
</tr>
<tr>
<td>TP</td>
<td>Tire Pressure</td>
</tr>
<tr>
<td>TPA</td>
<td>Traffic Pattern Altitude</td>
</tr>
<tr>
<td>TRACON</td>
<td>Terminal Radar Approach Control (FAA)</td>
</tr>
<tr>
<td>tran</td>
<td>transient</td>
</tr>
<tr>
<td>trns</td>
<td>transmit</td>
</tr>
<tr>
<td>trml</td>
<td>terminal</td>
</tr>
<tr>
<td>trmg</td>
<td>training</td>
</tr>
<tr>
<td>trms</td>
<td>transition</td>
</tr>
<tr>
<td>TRSA</td>
<td>Terminal Radar Service Area</td>
</tr>
<tr>
<td>Tue</td>
<td>Tuesday</td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
</tr>
<tr>
<td>twr</td>
<td>tower</td>
</tr>
<tr>
<td>twy</td>
<td>taxiway</td>
</tr>
<tr>
<td>UACC</td>
<td>Upper Area Control Center (used outside US)</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aerial Systems</td>
</tr>
<tr>
<td>UC</td>
<td>Under Construction</td>
</tr>
<tr>
<td>UCN</td>
<td>Urgent Change Notice</td>
</tr>
<tr>
<td>UDA</td>
<td>Upper Advisory Area</td>
</tr>
<tr>
<td>UDF</td>
<td>Ultra High Frequency Direction Finder</td>
</tr>
<tr>
<td>UFN</td>
<td>until further notice</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultra High Frequency (300 to 3000 MHz)</td>
</tr>
<tr>
<td>UIR</td>
<td>Upper Flight Information Region</td>
</tr>
<tr>
<td>una</td>
<td>unable</td>
</tr>
<tr>
<td>unauthd</td>
<td>unauthorized</td>
</tr>
<tr>
<td>unavbl</td>
<td>unavailable</td>
</tr>
<tr>
<td>unctl</td>
<td>uncontrolled</td>
</tr>
<tr>
<td>unk</td>
<td>unknown</td>
</tr>
<tr>
<td>unlgtd</td>
<td>unlighted</td>
</tr>
<tr>
<td>unltd</td>
<td>unlimited</td>
</tr>
<tr>
<td>unmrk</td>
<td>unmarked</td>
</tr>
<tr>
<td>unmt</td>
<td>unmarked</td>
</tr>
<tr>
<td>unl</td>
<td>unreliable</td>
</tr>
<tr>
<td>unstd</td>
<td>unrestricted</td>
</tr>
<tr>
<td>unsafy</td>
<td>unsatisfactory</td>
</tr>
<tr>
<td>unsked</td>
<td>unscheduled</td>
</tr>
<tr>
<td>unsvc</td>
<td>unserviceable</td>
</tr>
<tr>
<td>unuse, unusbl</td>
<td>unavailable</td>
</tr>
<tr>
<td>USA</td>
<td>United States Army</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USB</td>
<td>Upper Side Band</td>
</tr>
<tr>
<td>USCG</td>
<td>United States Coast Guard</td>
</tr>
<tr>
<td>USMC</td>
<td>United States Marine Corps</td>
</tr>
<tr>
<td>USSF</td>
<td>United States Space Force</td>
</tr>
<tr>
<td>USN</td>
<td>United States Navy</td>
</tr>
<tr>
<td>UTA</td>
<td>Upper Control Area</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
</tbody>
</table>

Abbreviation

- V: Defense Switching Network (telephone, formerly AUTOVON)
- V/STOL: Vertical and Short Take–off and Landing aircraft
- VAL: Visiting Aircraft Line
- var: variation (magnetic variation)
- VASI: Visual Approach Slope Indicator
- vcnry: vicinity
- VDF: Very High Frequency Direction Finder
- veh: vehicle
- vert: vertical
- VFR: Visual Flight Rules
- VFR–S: FLIP VFR Supplement
- VHF: Very High Frequency (30 to 300 MHz)
- VIP: Very Important Person
- vis: visibility
- VMU: Visual Meteorological Conditions
- VOIP: Voice Over Internet Protocol
- VOT: VOR Receiver Testing Facility
- W: Warning Area (followed by identification), Watts, West, White
- WCH: Wheel Crossing Height
- Wed: Wednesday
- Wg: Wing
- WIE: with immediate effect
- win: winter
- WIP: work in progress
- WSO: Weather Service Office
- WSFO: Weather Service Forecast Office
- wk: week
- wkd: weekday
- wkl: weekly
- wng: warning
- wo: without
- WSP: Weather System Processor
- wt: weight
- wx: weather
- yr: year

Abbreviation

- Z: Greenwich Mean Time (time groups only)
AIRPORT/FACILITY DIRECTORY LEGEND

SECTION 1: AIRPORT/FACILITY DIRECTORY LEGEND

1. CITY NAME
2. AIRPORT NAME (ALTERNATE NAME) (LTS/CLTS) CIV/ MIL.
3. 3 N UTC (-6,-5DT) N34°41'39" W99°20'20"
4. TPA—1000(800)
5. AOE LPA Class IV, ARF Index A
6. NOTAM FILE ORL Not insp. MON Airport

19. RWY 18-36 H12004X200 (ASPH-CONC-GRVY)
 S-90, D-160, 2D-300 PCN 80 R/W/T HIRL CL
 RWY 18: RLLS MALSF, TDZL, REIL, PAPI(PZR) GA 3.0 TCH 36°
 RVR-TMR. Thld dsscd 300’. Trees. Rgt tlc. 0.3% up.
 RWY 36: ALSF 1. 0.4% down.

RWY 36: ALSF 1. 0.4% down.

RWY 36: ALSF 1. 0.4% down.

LAND AND HOLD—SHORT OPERATIONS

LDG RWY HOLD—SHORT POINT AVBL LDG DIST
RWY 18 09-27 6500
RWY 36 09-27 5400

21. RUNWAY DECLARED DISTANCE INFORMATION

RWY 18: TOR-A-12004 TORA-12004 ASDA-11704 LDA-11504
RWY 36: TORA-12004 TORA-12004 ASDA-12004 LDA-11704

22. ARRESTING GEAR/SYSTEM

RWY 18 HOOK E5 (65’ OVRN) BAK-14 BAK-128 (1650’)
BAK-14 BAK-128 (1087’) HOOK E5 (74’ OVRN) RWY 36

23. SERVICE

S4 FUEL 100LL JET A AX 1, 3 LGT ACTIVATE MALSR Rwy 29,
REIL Rwy 11, VASI Rwy 11, HIRL Rwy 11-29, PAPI Rwy 17 and Rwy
35, MIIR Rwy 17-35—CTAF. MILITARY—A—GEAR-5 connected on
dep end, disconnected on aphc end.

JASU 3(A32A-60) 2(A32A-86) FUEL J8(MI)(INC-100, A)

24. FLUID WSP PRESAIR LOC OIL 0-128 MAINT S1 Mon—Fri 1000-2200Z

25. TAN ALERT AVbl 1300-0200Z svc limited weekends.

 in/o airpt. Heavy jumbo jet training surface to 9000’. Twy C stdlf indef. Flight Notification Service (ADCS) avbl.

 to ldg and after dep. Limited tran parking.

28. AIRPORT MANAGER: (580) 481-5739

29. WEATHER DATA SOURCES: AWOS—1 120.3 (202) 426-8000. LAWRS.

30. COMMUNICATIONS: SFA CTAF 122.8 UNICOM 122.95

31. NAME FS (ORL) on ard. 123.65 122.65 122.2

32. NAME RCO 112.7 112.1R (NAME RADIO)

33. NAME APP/DEP CON 127.35 275.725 (1200-0400Z)

34. TOWER 119.65 255.6 (1200-0400Z) GND CON 121.7 GCO 135.075 (ORLANDO CLNC) CLNC DEL 125.55

35. CPDLC H—H2XWZ D—TAXI D—CLC (LOGON KMEM)

36. NAME COMD POST (GERONIMO) 311.0 321.4 6761 PMSV METRO 239.8 NAME OPS 257.5

37. AIRSPACE: CLASS B See VFR Terminal Area Chart.

38. VOR TEST FACILITY (VOT): 116.7

39. RADIO AIDS TO NAVIGATION: NOTAM FILE ORL VHF/OF ctc FSS.

40. (NH) H VORTAC 112.2 MCO Chan 59 N28°32.55’ W81°20.12’ at fdl. 1110/8E.

41. H TACAN Chan 29 CBU (109.2) N28°32.65’ W81°21.12’ at fdl. 1115/8E.

42. HNRY NDB (LON) 221 OR N28°37.40’ W81°21.05’ 177º 5.4 NM to fdl.

43. ILS/OME 108.5 I—ORL Chan 22 Rwy 18. Class IIE. LOM HNRY NDB.

44. ASR/PAR (1200-0400Z)

45. COMM/NAV/WEATHER REMARKS: Emerg frequency 121.5 not avbl at twr.

46. HELP PAD H1 H100X75 (ASPH)

47. HELP PAD H2 H60X60 (ASPH)

48. HELIPORT REMARKS: Helipad H1 lctd on general aviation side and H2 lctd on air carrier side of arpt.

49. WATERWAY 15—38 5000X425 (WATER)

50. SEAPLANE REMARKS: Birds roosting and feeding areas along river banks. Seaplanes operating adjacent to SW side of arpt not visible
 from twr and are required to ctc twr.

All bearings and radii are magnetic unless otherwise specified. All mileages are nautical unless otherwise noted.
All times are Coordinated Universal Time (UTC) except as noted. All elevations are in feet above/below Mean Sea Level (MSL) unless otherwise noted.
The horizontal reference datum of this publication is North American Datum of 1983 (NAD83), which for charting purposes is considered equivalent to World Geodetic System 1984 (WGS 84).

PAC, 8 SEP 2022 to 3 NOV 2022
AIRPORT/FACILITY DIRECTORY LEGEND

LEGEND

This directory is a listing of data on record with the FAA on public-use airports, military airports and selected private-use airports specifically requested by the Department of Defense (DoD) for which a DoD Instrument Approach Procedure has been published in the U.S. Terminal Procedures Publication. Additionally this listing contains data for associated terminal control facilities, air route traffic control centers, and radio aids to navigation within the contiguous United States, Puerto Rico and the Virgin Islands. Civil airports and joint Civil/Military airports which are open to the public are listed alphabetically by state, associated city and airport name and cross-referenced by airport name. Military airports and private-use (limited civil access) joint Military/Civil airports are listed alphabetically by state and official airport name and cross-referenced by associated city name. Navaids, flight service stations and remote communication outlets that are associated with an airport, but with a different name, are listed alphabetically under their own name, as well as under the airport with which they are associated.

The listing of an airport as open to the public in this directory merely indicates the airport operator's willingness to accommodate transient aircraft, and does not represent that the airport conforms with any Federal or local standards, or that it has been approved for use on the part of the general public. Military airports, private-use airports, and private–use (limited civil access) joint Military/Civil airports are open to civil pilots only in an emergency or with prior permission. See Special Notice Section, Civil Use of Military Fields.

The information on obstructions is taken from reports submitted to the FAA. Obstruction data has not been verified in all cases. Pilots are cautioned that objects not indicated in this tabulation (or on the airports sketches and/or charts) may exist which can create a hazard to flight operation. Detailed specifics concerning services and facilities tabulated within this directory are contained in the Aeronautical Information Manual, Basic Flight Information and ATC Procedures.

The legend items that follow explain in detail the contents of this Directory and are keyed to the circled numbers on the sample on the preceding pages.

1 CITY AIRPORT NAME

Civil and joint Civil/Military airports which are open to the public are listed alphabetically by state and associated city. Where the city name is different from the airport name the city name will appear on the line above the airport name. Airports with the same associated city name will be listed alphabetically by airport name and will be separated by a dashed rule line. A solid rule line will separate all others. FAA approved helipads and seaplane landing areas associated with a land airport will be separated by a dotted line. Military airports and private–use (limited civil access) joint Military/Civil airports are listed alphabetically by state and official airport name.

2 ALTERNATE NAME

Alternate names, if any, will be shown in parentheses.

3 LOCATION IDENTIFIER

The location identifier is a three or four character FAA code followed by a four–character ICAO code, when assigned, to airports. If two different military codes are assigned, both codes will be shown with the primary operating agency’s code listed first. These identifiers are used by ATC in lieu of the airport name in flight plans, flight strips and other written records and computer operations. Zeros will appear with a slash to differentiate them from the letter “O”.

4 OPERATING AGENCY

Airports within this directory are classified into two categories, Military/Federal Government and Civil airports open to the general public, plus selected private-use airports. The operating agency is shown for military, private-use and joint use airports. The operating agency is shown by an abbreviation as listed below. When an organization is a tenant, the abbreviation is enclosed in parenthesis. No classification indicates the airport is open to the general public with no military tenant.

A AFRC MC
AF US Army Air Force Marine Corps
ANG MILCIV
AR US Army Reserve N
ARMN NAF
CG US Coast Guard NAS
CG/MIL NASA
DND P
DOE PVT

5 AIRPORT LOCATION

Airport location is expressed as distance and direction from the center of the associated city in nautical miles and cardinal points, e.g., 3 N.

6 TIME CONVERSION

Hours of operation of all facilities are expressed in Coordinated Universal Time (UTC) and shown as “Z” time. The directory indicates the number of hours to be subtracted from UTC to obtain local standard time and local daylight saving time (UTC—5h—6DT). The symbol “Z” indicates that during periods of Daylight Saving Time (DST) effective hours will be one hour earlier than shown. In those areas where daylight saving time is not observed the (—4DT) and “Z” will not be shown. Daylight saving time is in effect from 0200 local time the second Sunday in March to 0200 local time the first Sunday in November. Canada and all U.S. Conterminous States observe daylight saving time except Arizona and Puerto Rico, and the Virgin Islands. If the state observes daylight saving time and the operating times are other than daylight saving times, the operating hours will include the dates, times and no “Z” symbol will be shown, i.e., April 15–Aug 31 0630–1700Z, Sep 1–Apr 14 0600–1700Z.
AIRPORT/FACILITY DIRECTORY LEGEND

7 GEOPHYSIC POSITION OF AIRPORT—AIRPORT REFERENCE POINT (ARP)
Positions are shown as hemisphere, degrees, minutes and hundredths of a minute and represent the approximate geometric center of all usable runway surfaces.

8 CHARTS
Charts refer to the Sectional Chart and Low and High Altitude Enroute Chart and panel on which the airport or facility is depicted. Pacific Enroute Chart will be indicated by P. Area Enroute Charts will be indicated by A. Helicopter Chart depictions will be indicated as COPTER. IFR Gulf of Mexico West and IFR Gulf of Mexico Central will be referenced as GOMW and GOMC.

9 INSTRUMENT APPROACH PROCEDURES, AIRPORT DIAGRAMS
IAP indicates an airport for which a prescribed (Public Use) FAA Instrument Approach Procedure has been published. DIAP indicates an airport for which a prescribed DoD Instrument Approach Procedure has been published in the U.S. Terminal Procedures. See the Special Notice Section of this directory, Civil Use of Military Fields and the Aeronautical Information Manual 5–4–5 Instrument Approach Procedure Charts for additional information. AD indicates an airport for which an airport diagram has been published. Airport diagrams are located in the back of each Chart Supplement volume alphabetically by associated city and airport name.

10 AIRPORT SKETCH
The airport sketch, when provided, depicts the airport and related topographical information as seen from the air and should be used in conjunction with the text. It is intended as a guide for pilots in VFR conditions. Symbology that is not self–explanatory will be reflected in the sketch legend. The airport sketch will be oriented with True North at the top.

11 ELEVATION
The highest point of an airport's usable runways measured in feet from mean sea level. When elevation is sea level it will be indicated as “00”. When elevation is below sea level a minus “-” sign will precede the figure.

12 ROTATING LIGHT BEACON
B indicates rotating beacon is available. Rotating beacons operate sunset to sunrise unless otherwise indicated in the AIRPORT REMARKS or MILITARY REMARKS segment of the airport entry.

13 TRAFFIC PATTERN ALTITUDE
Traffic Pattern Altitude (TPA)—The first figure shown is TPA above mean sea level. The second figure in parentheses is TPA above airport elevation. TPA will only be published if they differ from the recommended altitudes as described in the AIM, Traffic Patterns. Multiple TPA shall be shown as “TPA—See Remarks” and detailed information shall be shown in the Airport or Military Remarks Section. Traffic pattern data for USAF bases, USN facilities, and U.S. Army airports (including those on which ACC or U.S. Army is a tenant) that deviate from standard pattern altitudes shall be shown in Military Remarks.

14 AIRPORT OF ENTRY, LANDING RIGHTS, AND CUSTOMS USER FEE AIRPORTS
U.S. CUSTOMS USER FEE AIRPORT—Private Aircraft operators are frequently required to pay the costs associated with customs processing.
AOE—Airport of Entry. A customs Airport of Entry where permission from U.S. Customs is not required to land. However, at least one hour advance notice of arrival is required.
LRA—Landing Rights Airport. Application for permission to land must be submitted in advance to U.S. Customs. At least one hour advance notice of arrival is required.
NOTE: Advance notice of arrival at both an AOE and LRA airport may be included in the flight plan when filed in Canada or Mexico. Where Flight Notification Service (ADCUUS) is available the airport remark will indicate this service. This notice also will be treated as an application for permission to land in the case of an LRA. Although advance notice of arrival may be relayed to Customs through Mexico, Canada, and U.S. Communications facilities by flight plan, the aircraft operator is solely responsible for ensuring that Customs receives the notification. (See Customs, Immigration and Naturalization, Public Health and Agriculture Department requirements in the International Flight Information Manual for further details.)

U.S. CUSTOMS AIR AND SEA PORTS, INSPECTORS AND AGENTS
Northeast Sector (New England and Atlantic States—ME to MD) 407–975–1740
Southeast Sector (Atlantic States—DC, WV, VA to FL) 407–975–1780
Central Sector (Interior of the US, including Gulf states—MS, AL, LA) 407–975–1760
Southwest East Sector (OK and eastern TX) 407–975–1840
Southwest West Sector (Western TX, NM and AZ) 407–975–1820
Pacific Sector (WA, OR, CA, HI and AK) 407–975–1800

PAC, 8 SEP 2022 to 3 NOV 2022
CERTIFICATED AIRPORT (14 CFR PART 139)

Airports serving Department of Transportation certified carriers and certified under 14 CFR part 139 are indicated by the Class and the ARFF Index; e.g., Class I, ARFF Index A, which relates to the availability of crash, fire, rescue equipment. Class I airports can have an ARFF Index A through E, depending on the aircraft length and scheduled departures. Class II, III, and IV will always carry an Index A.

AIRPORT CLASSIFICATIONS

<table>
<thead>
<tr>
<th>Type of Air Carrier Operation</th>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
<th>Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Air Carrier Aircraft with 31 or more passenger seats</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unscheduled Air Carrier Aircraft with 31 or more passengers seats</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Scheduled Air Carrier Aircraft with 10 to 30 passenger seats</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

INDICES AND AIRCRAFT RESCUE AND FIRE FIGHTING EQUIPMENT REQUIREMENTS

<table>
<thead>
<tr>
<th>Airport Index</th>
<th>Required No. Vehicles</th>
<th>Aircraft Length</th>
<th>Scheduled Departures</th>
<th>Agent + Water for Foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td><90’</td>
<td>≥1</td>
<td>500#DC or HALON 1211 or 450#DC + 100 gal H₂O</td>
</tr>
<tr>
<td>B</td>
<td>1 or 2</td>
<td>90’, <126’</td>
<td>≥5</td>
<td>Index A + 1500 gal H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥126’, <159’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 or 3</td>
<td>≥126’, <159’</td>
<td>≥5</td>
<td>Index A + 3000 gal H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥159’, <200’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>≥159’, <200’</td>
<td>≥5</td>
<td>Index A + 4000 gal H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥200’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>200’</td>
<td>≥5</td>
<td>Index A + 6000 gal H₂O</td>
</tr>
</tbody>
</table>

≥ Greater Than; < Less Than; ≥ Equal or Greater Than; ≤ Equal or Less Than; H₂O-Water; DC-Dry Chemical.

NOTE: The listing of ARFF index does not necessarily assure coverage for non–air carrier operations or at other than prescribed times for air carrier. ARFF Index Ltd.—indicates ARFF coverage may or may not be available, for information contact airport manager prior to flight.

NOTAM SERVICE

All public use landing areas are provided NOTAM service. A NOTAM FILE identifier is shown for individual landing areas, e.g., “NOTAM FILE BNA”. See the AIM, Basic Flight Information and ATC Procedures for a detailed description of NOTAMs. Current NOTAMs are available from flight service stations at 1–800–WX–BRIEF (992–7433) or online through the FAA PilotWeb at https://pilotweb.faa.gov. Military NOTAMs are available using the Defense Internet NOTAM Service (DINS) at https://www.notams.faa.gov. Pilots flying to or from airports not available through the FAA PilotWeb or DINS can obtain assistance from Flight Service.

FAA INSPECTION

All airports not inspected by FAA will be identified by the note: Not insp. This indicates that the airport information has been provided by the owner or operator of the field.

MINIMUM OPERATIONAL NETWORK (MON) AIRPORT DESIGNATION

MON Airports have at least one VOR or ILS instrument approach procedure that can be flown without the need for GPS, WAAS, DME, NDB or RADAR. The primary purpose of the MON designation is for recovery in case of GPS outage.

RUNWAY DATA

Runway information is shown on two lines. That information common to the entire runway is shown on the first line while information concerning the runway ends is shown on the second or following line. Runway direction, surface, length, width, weight bearing capacity, lighting, and slope, when available are shown for each runway. Multiple runways are shown with the longest runway first. Direction, length, width, and lighting are shown for sea–lanes. The full dimensions of helipads are shown, e.g., 50X150. Runway data that requires clarification will be placed in the remarks section.

RUNWAY DESIGNATION

Runways are normally numbered in relation to their magnetic orientation rounded off to the nearest 10 degrees. Parallel runways can be designated L (left)/R (right)/C (center). Runways may be designated as Ultralight or assault strips. Assault strips are shown by magnetic bearing.

RUNWAY DIMENSIONS

Runway length and width are shown in feet. Length shown is runway end to end including displaced thresholds, but excluding those areas designed as runovers.
AIRPORT/FACILITY DIRECTORY LEGEND

RUNWAY SURFACE AND SURFACE TREATMENT
Runway lengths prefixed by the letter “H” indicate that the runways are hard surfaced (concrete, asphalt, or part asphalt–concrete). If the runway length is not prefixed, the surface is sod, clay, etc. The runway surface composition is indicated in parentheses after runway length as follows:

- (AFSC)—Aggregate friction seal coat
- (AM2)—Temporary metal planks coated with nonskid material
- (ASPH)—Asphalt
- (CONC)—Concrete
- (DIRT)—Dirt
- (GRVD)—Grooved
- (GRVL)—Gravel, or cinders
- (MATS)—Pierced steel planking, landing mats, membranes
- (PEM)—Part concrete, part asphalt
- (PFC)—Porous friction courses
- (PSP)—Pierced steel plank
- (RFSC)—Rubberized friction seal coat
- (SAND)—Sand
- (TURF)—Turf
- (TRTD)—Treated
- (WC)—Wire combed

RUNWAY WEIGHT BEARING CAPACITY
Runway strength data shown in this publication is derived from available information and is a realistic estimate of capability at an average level of activity. It is not intended as a maximum allowable weight or as an operating limitation. Many airport pavements are capable of supporting limited operations with gross weights in excess of the published figures. Permissible operating weights, insofar as runway strengths are concerned, are a matter of agreement between the owner and user. When desiring to operate into any airport at weights in excess of those published in the publication, users should contact the airport management for permission. Runway strength figures are shown in thousand of pounds, with the last three figures being omitted. Add 000 to figure following S, D, 2S, 2T, AUW, SWL, etc., for gross weight capacity. A blank space following the letter designator is used to indicate the runway can sustain aircraft with this typelanding gear, although definite runway weight bearing capacity figures are not available, e.g., S, D.

Applicable codes for typical gear configurations with S=Dual, D=Triple and Q=Quadruple:

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>NEW</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td>Single wheel type landing gear (DC3), (C47), (F15), etc.</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>Dual wheel type landing gear (B1900), (B737), (A319), etc.</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>Dual wheel type landing gear (P3, C9).</td>
</tr>
<tr>
<td>ST</td>
<td>2S</td>
<td>Two single wheels in tandem type landing gear (C130).</td>
</tr>
<tr>
<td>TRT</td>
<td>2T</td>
<td>Two triple wheels in tandem type landing gear (C17), etc.</td>
</tr>
<tr>
<td>DT</td>
<td>2D</td>
<td>Two dual wheels in tandem type landing gear (B707), etc.</td>
</tr>
<tr>
<td>TF</td>
<td>2D</td>
<td>Two dual wheels in tandem type landing gear (B757, KG135).</td>
</tr>
<tr>
<td>SBTT</td>
<td>2D/D1</td>
<td>Two dual wheels in tandem/dual wheel body gear type landing gear (KC10).</td>
</tr>
<tr>
<td>None</td>
<td>2D/D2</td>
<td>Two dual wheels in tandem/two dual wheels in tandem body gear type landing gear (A340-600).</td>
</tr>
<tr>
<td>DDT</td>
<td>2D/2D</td>
<td>Two dual wheels in tandem/two dual wheels in double tandem body gear type landing gear (B747, E4).</td>
</tr>
<tr>
<td>TTT</td>
<td>3D</td>
<td>Three dual wheels in tandem type landing gear (B777), etc.</td>
</tr>
<tr>
<td>TT</td>
<td>D2</td>
<td>Dual wheel gear two struts per side main gear type landing gear (B52).</td>
</tr>
<tr>
<td>TDT</td>
<td>C5</td>
<td>Complex dual wheel and quadruple wheel combination landing gear (C5).</td>
</tr>
</tbody>
</table>

AUW—All up weight. Maximum weight bearing capacity for any aircraft irrespective of landing gear configuration.

SWL—Single Wheel Loading. (This includes information submitted in terms of Equivalent Single Wheel Loading (ESWL) and Single Isolated Wheel Loading).

PSI—Pounds per square inch. PSI is the actual figure expressing maximum pounds per square inch runway will support, e.g., (SWL 000/PSI 535).

Omission of weight bearing capacity indicates information unknown.

The ACN/PCN System is the ICAO standard method of reporting pavement strength for pavements with bearing strengths greater than 12,500 pounds. The Pavement Classification Number (PCN) is established by an engineering assessment of the runway. The PCN is for use in conjunction with an Aircraft Classification Number (ACN). Consult the Aircraft Flight Manual, Flight Information Handbook, or other appropriate source for ACN tables or charts. Currently, ACN data may not be available for all aircraft. If an ACN table or chart is available, the ACN can be calculated by taking into account the aircraft weight, the pavement type, and the subgrade category. For runways that have been evaluated under the ACN/PCN system, the PCN will be shown as a five-part code (e.g. PCN 80 R/B/W/T).

Details of the coded format are as follows:

NOTE: ICAO adopted the ACR/PCR System as the new standard method for reporting pavement strength in July 2020. The ACR/PCR System methodology remains unchanged from the ACN/PCN system described above. The Pavement Classification Rating (PCR) remains a five-part code (e.g. PCR 460 R/B/W/T) with the number being one order of magnitude higher than PCNs. The details of the code below are not changed with PCR. ICAO has established a four year transition period during which time a PCN or a PCR may be reported. Currently Aircraft Classification Rating (ACR) data may not be available for all aircraft.
NOTE: Prior permission from the airport controlling authority is required when the ACN/ACR of the aircraft exceeds the published PCN/PCR or aircraft tire pressure exceeds the published limits.

(1) The PCN/PCR NUMBER—The reported PCN/PCR indicates that an aircraft with an ACN/ACR equal or less than the reported PCN/PCR can operate on the pavement subject to any limitation on the tire pressure.

(2) The type of pavement:
 R — Rigid
 F — Flexible

(3) The pavement subgrade category:
 A — High
 B — Medium
 C — Low
 D — Ultra–low

(4) The maximum tire pressure authorized for the pavement:
 W — Unlimited, no pressure limit
 X — High, limited to 254 psi (1.75 MPa)
 Y — Medium, limited to 181 psi (1.25MPa)
 Z — Low, limited to 73 psi (0.50 MPa)

(5) Pavement evaluation method:
 T — Technical evaluation
 U — By experience of aircraft using the pavement

RUNWAY LIGHTING

Lights are in operation sunset to sunrise. Lighting available by prior arrangement only or operating part of the night and/or pilot controlled lighting with specific operating hours are indicated under airport or military remarks. At USN/USMC facilities lights are available only during airport hours of operation. Since obstructions are usually lighted, obstruction lighting is not included in this code. Unlighted obstructions on or surrounding an airport will be noted in airport or military remarks. Runway lights nonstandard (NSTD) are systems for which the light fixtures are not FAA approved L–800 series: color, intensity, or spacing does not meet FAA standards. Nonstandard runway lights, VASI, or any other system not listed below will be shown in airport remarks or military service. Temporary, emergency or limited runway edge lighting such as flares, smudge pots, lanterns or portable runway lights will also be shown in airport remarks or military service. Types of lighting are shown with the runway or runway end they serve.

NSTD—Light system fails to meet FAA standards.

LIRL—Low Intensity Runway Lights.

MIIR—Medium Intensity Runway Lights.

HIRL—High Intensity Runway Lights.

RAIL—Runway Alignment Indicator Lights.

REL—Runway End Identifier Lights.

CL—Centerline Lights.

TDZL—Touchdown Zone Lights.

ODALS—Omnidirectional Approach Lighting System.

AF OVRN—Air Force Overrun 1000’ Standard Approach Lighting System.

MALTS—Medium Intensity Approach Lighting System.

MALSF—Medium Intensity Approach Lighting System with Sequenced Flashing Lights.

MALS—Medium Intensity Approach Lighting System with Runway Alignment Indicator Lights.

RLLS—Runway Lead-in Light System

SALS—Short Approach Lighting System.

SALSF—Short Approach Lighting System with Sequenced Flashing Lights.

SSALS—Simplified Short Approach Lighting System.

SSALF—Simplified Short Approach Lighting System with Sequenced Flashing Lights.

SSALR—Simplified Short Approach Lighting System with Runway Alignment Indicator Lights.

ALSAF—High Intensity Approach Lighting System with Sequenced Flashing Lights.

ALSF1—High Intensity Approach Lighting System with Sequenced Flashing Lights, Category I, Configuration.

ALSF2—High Intensity Approach Lighting System with Sequenced Flashing Lights, Category II, Configuration.

SF—Sequenced Flashing Lights.

OLS—Optical Landing System.

WAVE—OFF.

NOTE: Civil ALSF2 may be operated as SSALR during favorable weather conditions. When runway edge lights are positioned more than 10 feet from the edge of the usable runway surface a remark will be added in the “Remarks” portion of the airport entry. This is applicable to Air Force, Air National Guard and Air Force Reserve Bases, and those joint use airfields on which they are tenants.

VISUAL GLIDESLOPE INDICATORS

APAP—A system of panels, which may or may not be lighted, used for alignment of approach path.

<table>
<thead>
<tr>
<th>PNIL</th>
<th>APAP on left side of runway</th>
<th>PNIR</th>
<th>APAP on right side of runway</th>
</tr>
</thead>
</table>

PAPI—Precision Approach Path Indicator

<table>
<thead>
<tr>
<th>P2L</th>
<th>2-identical light units placed on left side of runway</th>
<th>P4L</th>
<th>4-identical light units placed on left side of runway</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2R</td>
<td>2-identical light units placed on right side of runway</td>
<td>P4R</td>
<td>4-identical light units placed on right side of runway</td>
</tr>
</tbody>
</table>

PVASI—Pulsating/steady burning visual approach slope indicator, normally a single light unit projecting two colors.

<table>
<thead>
<tr>
<th>PSIL</th>
<th>PVASI on left side of runway</th>
<th>PSIR</th>
<th>PVASI on right side of runway</th>
</tr>
</thead>
</table>

SAVASI—Simplified Abbreviated Visual Approach Slope Indicator

<table>
<thead>
<tr>
<th>S2L</th>
<th>2-box SAVASI on left side of runway</th>
<th>S2R</th>
<th>2-box SAVASI on right side of runway</th>
</tr>
</thead>
</table>
SAVASI—Simplified Abbreviated Visual Approach Slope Indicator
S2L 2–box SAVASI on left side of runway
S2R 2–box SAVASI on right side of runway

TRCV—Tri–color visual approach slope indicator, normally a single light unit projecting three colors.
TRC on left side of runway
TRV on right side of runway

VASI—Visual Approach Slope Indicator
V2L 2–box VASI on left side of runway
V2R 2–box VASI on right side of runway
V4L 4–box VASI on left side of runway
V4R 4–box VASI on right side of runway

NOTE: Approach slope angle and threshold crossing height will be shown when available; i.e., —GA 3.5° TCH 37˚.

PILOT CONTROL OF AIRPORT LIGHTING

Key Mike Function
7 times within 5 seconds Highest intensity available
5 times within 5 seconds Medium or lower intensity (Lower REIL or REIL–Off)
3 times within 5 seconds Lowest intensity available (Lower REIL or REIL–Off)

Available systems will be indicated in the Service section, e.g., LGT ACTIVATE HIRL Rwy 07–25, MALS Rwy 07, and VASI Rwy 07—122.8.

Where the airport is not served by an instrument approach procedure and/or has an independent type system of different specification installed by the airport sponsor, descriptions of the type lights, method of control, and operating frequency will be explained in clear text. See AIM, “Aeronautical Lighting and Other Airport Visual Aids,” for a detailed description of pilot control of airport lighting.

RUNWAY SLOPE
When available, runway slope data will be provided. Runway slope will be shown only when it is 0.3 percent or greater. On runways less than 8000 feet, the direction of the slope up will be indicated, e.g., 0.3% up NW. On runways 8000 feet or greater, the slope will be shown (up or down) on the runway end line, e.g., RWY 13: 0.3% up., RWY 31: Polr. Rft fc 0.4% down.

RUNWAY END DATA
Information pertaining to the runway approach end such as approach lights, touchdown zone lights, runway end identification lights, visual glideslope indicators, displaced thresholds, controlling obstruction, and right hand traffic pattern, will be shown on the specific runway end. “Rgt fc”—Right traffic indicates right turns should be made on landing and takeoff for specified runway end. Runway Visual Range shall be shown as “RVR” appended with “F” for touchdown, “M” for midpoint, and “R” for rollout; e.g., RVR-TMR.

LAND AND HOLD—SHORT OPERATIONS (LAHOS)
LAHOS is an acronym for “Land and Hold—Short Operations” These operations include landing and holding short of an intersection runway, an intersecting taxiway, or other predetermined points on the runway other than a runway or taxiway. Measured distance represents the available landing distance on the landing runway, in feet.

Specific questions regarding these distances should be referred to the air traffic manager of the facility concerned. The Aeronautical Information Manual contains specific details on hold–short operations and markings.

RUNWAY DECLARED DISTANCE INFORMATION
TORA—Take–off Run Available. The length of runway declared available and suitable for the ground run of an aeroplane take–off.
TODA—Take–off Distance Available. The length of the take–off run available plus the length of the stopway, if provided.
LDA—Landing Distance Available. The length of runway which is declared available and suitable for the ground run of an aeroplane landing.

ARRESTING GEAR/SYSTEMS
Arresting gear is shown as it is located on the runway. The a–gear distance from the end of the appropriate runway (or into the overrun) is indicated in parentheses. A–Gear which has a bi–direction capability and can be utilized for emergency approach end engagement is indicated by a (B). Up to 15 minutes advance notice may be required for rigging A–Gear for approach and engagement. Airport listing may show availability of other than US Systems. This information is provided for emergency requirements only. Refer to current aircraft operating manuals for specific engagement weight and speed criteria based on aircraft structural restrictions and arresting system limitations.

Following is a list of current systems referenced in this publication identified by both Air Force and Navy terminology:

TYPE DESCRIPTION
BAK–9 Rotary friction brake.
BAK–12A Standard BAK–12 with 950 foot run out, 1–inch cable and 40,000 pound setting. Rotary friction brake.
BAK–12B Extended BAK–12 with 1200 foot run, ¼ inch Cable and 50,000 pounds weight setting. Rotary friction brake.
E2B Rotary Hydraulic (Water Brake).
M21 Rotary Hydraulic (Water Brake) Mobile.

PAC, 8 SEP 2022 to 3 NOV 2022
The following device is used in conjunction with some aircraft arresting systems:

BAK–14
A device that raises a hook cable out of a slot in the runway surface and is remotely positioned for engagement by the tower on request. (In addition to personnel reaction time, the system requires up to five seconds to fully raise the cable.)

H
A device that raises a hook cable out of a slot in the runway surface and is remotely positioned for engagement by the tower on request. (In addition to personnel reaction time, the system requires up to one and one-half seconds to fully raise the cable.)

UNI–DIRECTIONAL CABLE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>US EQUIVALENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB60</td>
<td>Textile brake—an emergency one-time use, modular braking system employing the tearing of specially woven textile straps to absorb the kinetic energy.</td>
<td>E–5</td>
</tr>
</tbody>
</table>

E5/E5–1/E5–3
Chain Type. At USN/USMC stations E–5 A–GEAR systems are rated, e.g., E–5 RATING–13R–1100 HW (DRY), 31L/R–1200 STD (WET). This rating is a function of the A–GEAR chain weight and length and is used to determine the maximum aircraft engaging speed. A dry rating applies to a stabilized surface (dry or wet) while a wet rating takes into account the amount (if any) of wet overrun that is not capable of withstanding the aircraft weight. These ratings are published under Service/Military/A-Gear in the entry.

FOREIGN CABLE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>44B–3H</td>
<td>Rotary Hydraulic (Water Brake)</td>
</tr>
<tr>
<td>CHAG</td>
<td>Chain</td>
</tr>
</tbody>
</table>

UNI–DIRECTIONAL BARRIER

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA–1A</td>
<td>Web barrier between stanchions attached to a chain energy absorber.</td>
</tr>
<tr>
<td>BAK–15</td>
<td>Web barrier between stanchions attached to an energy absorber (water squeezer, rotary friction, chain). Designed for wing engagement.</td>
</tr>
</tbody>
</table>

NOTE: Landing short of the runway threshold on a runway with a BAK–15 in the underrun is a significant hazard. The barrier in the down position still protrudes several inches above the underrun. Aircraft contact with the barrier short of the runway threshold can cause damage to the barrier and substantial damage to the aircraft.

OTHER

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| EMAS | Engineered Material Arresting System, located beyond the departure end of the runway, consisting of high energy absorbing materials which will crush under the weight of an aircraft.

SERVICE

S1: Minor airframe repairs.
S2: Minor airframe and major powerplant repairs.
S3: Major airframe and minor powerplant repairs.
S4: Major airframe and major powerplant repairs.
S5: Major airframe repairs.
S6: Minor airframe and major powerplant repairs.
S7: Major powerplant repairs.
S8: Minor powerplant repairs.

CODE

<table>
<thead>
<tr>
<th>FUEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Grade 100 gasoline (Green)</td>
</tr>
<tr>
<td>100LL</td>
<td>100LL gasoline (low lead) (Blue)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Jet A, Kerosene, without FS-II(^{*}), FP(^{**}) minus 40(^{°})C.</td>
</tr>
<tr>
<td>A+</td>
<td>Jet A, Kerosene, with FS-II(^{*}), FP(^{**}) minus 40(^{°})C.</td>
</tr>
<tr>
<td>A++</td>
<td>Jet A, Kerosene, with FS-II(^{}), C/LI(^{}), SDA(^{##}), FP(^{**}) minus 40(^{°})C.</td>
</tr>
<tr>
<td>A++100</td>
<td>Jet A, Kerosene, with FS-II(^{}), C/LI(^{}), SDA(^{##}), FP(^{**}) minus 40(^{°})C, with +100 fuel additive that improves thermal stability characteristics of kerosene jet fuels.</td>
</tr>
<tr>
<td>A1</td>
<td>Jet A–1, Kerosene, without FS-II(^{*}), FP(^{**}) minus 47(^{°})C.</td>
</tr>
<tr>
<td>A1+</td>
<td>Jet A–1, Kerosene with FS-II(^{*}), FP(^{**}) minus 47(^{°})C.</td>
</tr>
</tbody>
</table>

*(Fuel System Icing Inhibitor) **(Freeze Point) #(Corrosion Inhibitors/Lubricity Improvers) ##(Static Dissipator Additive)
NOTE: Certain automobile gasoline may be used in specific aircraft engines if a FAA supplemental type certificate has been obtained. Automobile gasoline, which is to be used in aircraft engines, will be identified as “MOGAS”, however, the grade/type and other octane rating will not be published.

Data shown on fuel availability represents the most recent information the publisher has been able to acquire. Because of a variety of factors, the fuel listed may not always be obtainable by transient civil pilots. Confirmation of availability of fuel should be made directly with fuel suppliers at locations where refueling is planned.

OXYGEN—CIVIL

<table>
<thead>
<tr>
<th>Code</th>
<th>Pressure Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OX 1</td>
<td>High Pressure</td>
<td>OX 3</td>
</tr>
<tr>
<td>OX 2</td>
<td>Low Pressure</td>
<td>OX 4</td>
</tr>
</tbody>
</table>

SERVICE—MILITARY

Specific military services available at the airport are listed under this general heading. Remarks applicable to any military service are shown in the individual service listing.

JET AIRCRAFT STARTING UNITS (JASU)—MILITARY

The numeral preceding the type of unit indicates the number of units available. The absence of the numeral indicates ten or more units available. If the number of units is unknown, the number one will be shown. Absence of JASU designation indicates non-availability.

The following is a list of current JASU systems referenced in this publication:

USAF JASU (For variations in technical data, refer to T.O. 35–1–7.)

ELECTRICAL STARTING UNITS:

<table>
<thead>
<tr>
<th>Model</th>
<th>AC Power</th>
<th>DC Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM32A–66</td>
<td>115/200v, 3 phase, 90 kva, 0.8 pf, 4 wire</td>
<td>28v, 1500 amp, 72 kw (with TR pack)</td>
</tr>
<tr>
<td>MC–1A</td>
<td>115/208v, 400 cycle, 3 phase, 37.5 kva, 0.8 pf, 108 amp, 4 wire</td>
<td>28v, 500 amp, 14 kw</td>
</tr>
<tr>
<td>MD–3</td>
<td>115/208v, 400 cycle, 3 phase, 60 kva, 0.75 pf, 4 wire</td>
<td>28v, 1500 amp, 45 kw, split bus</td>
</tr>
<tr>
<td>MD–3A</td>
<td>115/208v, 400 cycle, 3 phase, 60 kva, 0.75 pf, 4 wire</td>
<td>28v, 1500 amp, 45 kw, split bus</td>
</tr>
<tr>
<td>MD–3M</td>
<td>115/208v, 400 cycle, 3 phase, 60 kva, 0.75 pf, 4 wire</td>
<td>28v, 500 amp, 15 kw</td>
</tr>
<tr>
<td>MD–4</td>
<td>120/208v, 400 cycle, 3 phase, 62.5 kva, 0.8 pf, 175 amp, “WYE” neutral ground, 4 wire, 120v, 400 cycle, 3 phase, 62.5 kva, 0.8 pf, 303 amp, “DELTA” 3 wire, 120v, 400 cycle, 1 phase, 62.5 kva, 0.8 pf, 520 amp, 2 wire</td>
<td></td>
</tr>
</tbody>
</table>

AIR STARTING UNITS

<table>
<thead>
<tr>
<th>Model</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM32–95</td>
<td>150 +/- 5 lb/min (2055 +/- 68 cfm) at 51 +/- 2 psia</td>
</tr>
<tr>
<td>AM32A–95</td>
<td>150 +/- 5 lb/min @ 49 +/- 2 psia (35 +/- 2 psig)</td>
</tr>
<tr>
<td>LASS</td>
<td>150 +/- 5 lb/min @ 49 +/- 2 psia</td>
</tr>
<tr>
<td>MA–1A</td>
<td>82 lb/min (1123 cfm) at 130° air inlet temp, 45 psia (min) air outlet press</td>
</tr>
<tr>
<td>MC–1</td>
<td>15 cfm, 3500 psia</td>
</tr>
<tr>
<td>MC–1A</td>
<td>15 cfm, 3500 psia</td>
</tr>
<tr>
<td>MC–2A</td>
<td>15 cfm, 200 psia</td>
</tr>
<tr>
<td>MC–11</td>
<td>8,000 cu in cap, 4000 psig, 15 cfm</td>
</tr>
</tbody>
</table>

COMBINED AIR AND ELECTRICAL STARTING UNITS:

<table>
<thead>
<tr>
<th>Model</th>
<th>AC Power</th>
<th>DC Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGPU</td>
<td>115/200v, 400 cycle, 3 phase, 30 kw gen</td>
<td>28v, 700 amp</td>
</tr>
<tr>
<td>AM32A–60*</td>
<td>120 +/- 4 lb/min (1644 +/- 55 cfm) at 49 +/- 2 psia</td>
<td>AIR: 60 lb/min @ sea level</td>
</tr>
<tr>
<td>AM32A–60A</td>
<td>120/208v, 400 cycle, 3 phase, 75 kva, 0.75 pf, 4 wire, 120v, 1 phase, 25 kva</td>
<td>DC: 28v, 500 amp, 15 kw</td>
</tr>
<tr>
<td>AM32A–60B*</td>
<td>120/208v, 400 cycle, 3 phase, 75 kva, 0.75 pf, 4 wire</td>
<td>AIR: 130 lb/min, 50 psia</td>
</tr>
<tr>
<td>AM32A–60B*</td>
<td>120/208v, 400 cycle, 3 phase, 75 kva, 0.75 pf, 4 wire</td>
<td>DC: 28v, 200 amp, 5.6 kw</td>
</tr>
</tbody>
</table>

*NOTE: During combined air and electrical loads, the pneumatic circuitry takes preference and will limit the amount of electrical power available.
USN JASU

ELECTRICAL STARTING UNITS:
- NC–8A/A1: DC: 500 amp constant, 750 amp intermittent, 28v;
 AC: 60 kva @ .8 pf, 115/200v, 3 phase, 400 Hz.
- NC–10A/A1/B/C: DC: 750 amp constant, 1000 amp intermittent, 28v;
 AC: 90 kva, 115/200v, 3 phase, 400 Hz.

AIR STARTING UNITS:
- GTC–85/GTE–85: 120 lbs/min @ 45 psi.
- MSU–200NAV/AA/U47A–5: 204 lbs/min @ 56 psi.
- WELLS AIR START SYSTEM: 180 lbs/min @ 75 psi or 120 lbs/min @ 45 psi. Simultaneous multiple start capability.

COMBINED AIR AND ELECTRICAL STARTING UNITS:
- NCPP–105/RCPT: 180 lbs/min @ 75 psi or 120 lbs/min @ 45 psi. 700 amp, 28v DC. 120/208v, 400 Hz AC, 30 kva.

ARMY JASU
- 59B2–1B: 28v, 7.5 kw, 280 amp.

OTHER JASU

ELECTRICAL STARTING UNITS (DND):
- CE12: AC 115/200v, 140 kva, 400 Hz, 3 phase
- CE13: AC 115/200v, 60 kva, 400 Hz, 3 phase
- CE14: AC/DC 115/200v, 140 kva, 400 Hz, 3 phase, 28vDC, 1500 amp
- CE15: DC 22–35v, 500 amp continuous 1100 amp intermittent
- CE16: DC 22–35v, 500 amp continuous 1100 amp intermittent soft start

AIR STARTING UNITS (DND):
- CA2: ASA 45.5 psig, 116.4 lb/min

COMBINED AIR AND ELECTRICAL STARTING UNITS (DND):
- CEA1: AC 120/208v, 60 kva, 400 Hz, 3 phase DC 28v, 75 amp
 AIR 112.5 lb/min, 47 psig

ELECTRICAL STARTING UNITS (OTHER):
- C–26: 28v 45kw 115–200v 15kw 380–800 Hz 1 phase 2 wire
- E3: DC 28v/10kw

AIR STARTING UNITS (OTHER):
- A4: 40 psi/2 lb/sec (LPAS Mk12, Mk12L, Mk12A, Mk1, Mk2B)
- MA–1: 150 Air HP, 115 lb/min 50 psia
- MA–2: 250 Air HP, 150 lb/min 75 psia

CARTRIDGE:
- MXU–4A: USAF

FUEL—MILITARY

Fuel available through US Military Base supply. DESC Into–Plane Contracts and/or reciprocal agreement is listed first and is followed by (Mil). At commercial airports where Into–Plane contracts are in place, the name of the refueling agent is shown. Military fuel should be used first if it is available. When military fuel cannot be obtained but Into–Plane contract fuel is available, Government aircraft must refuel with the contract fuel and applicable refueling agent to avoid any breach in contract terms and conditions. Fuel not available through the above is shown preceded by NC (no contract). When fuel is obtained from NC sources, local purchase procedures must be followed. The US Military Aircraft Identplates DD Form 1896 (Jet Fuel), DD Form 1897 (Avgas) and AF Form 1245 (Avgas) are used at military installations only. The US Government Aviation Into–Plane Reimbursement (AIR) Card (currently issued by AVCARD) is the instrument to be used to obtain fuel under a DESC Into–Plane Contract and for NC purchases if the refueling agent at the commercial airport accepts the AVCARD. A current list of contract fuel locations is available online at https://cis.energy.dla.mil/ip_cis/ See legend item 14 for fuel code and description.

SUPPORTING FLUIDS AND SYSTEMS—MILITARY

CODE
- WAI: Water–Alcohol Injection Type, Thrust Augmentation—Jet Aircraft.
- SP: Single Point Refueling.
- PRESAIR: Air Compressors rated 3,000 PSI or more.
AIRPORT/FACILITY DIRECTORY LEGEND

OXYGEN:
- **LPOX**: Low pressure oxygen servicing.
- **HPOX**: High pressure oxygen servicing.
- **LHOX**: Low and high pressure oxygen servicing.
- **LOX**: Liquid oxygen servicing.
- **OXRB**: Oxygen replacement bottles. (Maintained primarily at Naval stations for use in acft where oxygen can be replenished only by replacement of cylinders.)

NOTE: Combinations of above items is used to indicate complete oxygen servicing available;
- **LH0XRB**: Low and high pressure oxygen servicing and replacement bottles;
- **LP0XRB**: Low pressure oxygen replacement bottles only, etc.

NOTE: Aircraft will be serviced with oxygen procured under military specifications only. Aircraft will not be serviced with medical oxygen.

NITROGEN:
- **LPNIT**: Low pressure nitrogen servicing.
- **HPNIT**: High pressure nitrogen servicing.
- **LHNIT**: Low and high pressure nitrogen servicing.

OIL—MILITARY

US AVIATION OILS (MIL SPECS):

<table>
<thead>
<tr>
<th>CODE</th>
<th>GRADE</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0−113</td>
<td>1065,</td>
<td>Reciprocating Engine Oil (MIL−L−6082)</td>
</tr>
<tr>
<td>0−117</td>
<td>1100,</td>
<td>Reciprocating Engine Oil (MIL−L−6082)</td>
</tr>
<tr>
<td>0−117 +</td>
<td>1100, 0−117 plus cyclohexanone (MIL−L−6082)</td>
<td></td>
</tr>
<tr>
<td>0−123</td>
<td>1065,</td>
<td>(Dispersant), Reciprocating Engine Oil (MIL−L−22851 Type III)</td>
</tr>
<tr>
<td>0−128</td>
<td>1100,</td>
<td>(Dispersant), Reciprocating Engine Oil (MIL−L−22851 Type II)</td>
</tr>
<tr>
<td>0−132</td>
<td>1005,</td>
<td>Jet Engine Oil (MIL−L−6081)</td>
</tr>
<tr>
<td>0−133</td>
<td>1010,</td>
<td>Jet Engine Oil (MIL−L−6081)</td>
</tr>
<tr>
<td>0−147</td>
<td>None,</td>
<td>MIL−L−6085A Lubricating Oil, Instrument, Synthetic</td>
</tr>
<tr>
<td>0−148</td>
<td>None,</td>
<td>MIL−L−7808 (Synthetic Base) Turbine Engine Oil</td>
</tr>
<tr>
<td>0−149</td>
<td>None,</td>
<td>Aircraft Turbine Engine Synthetic, 7.5c St</td>
</tr>
<tr>
<td>0−155</td>
<td>None,</td>
<td>MIL−L−6086C, Aircraft, Medium Grade</td>
</tr>
<tr>
<td>0−156</td>
<td>None,</td>
<td>MIL−L−23699 (Synthetic Base), Turboprop and Turboashft Engines</td>
</tr>
<tr>
<td>JOAP</td>
<td>SOAP</td>
<td>Joint Oil Analysis Program. JOAP support is furnished during normal duty hours, other times on request. (JOAP and SOAP programs provide essentially the same service, JOAP is now the standard joint service supported program.)</td>
</tr>
</tbody>
</table>

TRANSPORT ALERT (TRAN ALERT)—MILITARY

Tran Alert service is considered to include all services required for normal aircraft turn-around, e.g., servicing (fuel, oil, oxygen, etc.), debriefing to determine requirements for maintenance, minor maintenance, inspection and parking assistance of transient aircraft. Drag chute repack, specialized maintenance, or extensive repairs will be provided within the capabilities and priorities of the base. Delays can be anticipated after normal duty hours/holidays/weekends regardless of the hours of transient maintenance operation. Pilots should not expect aircraft to be serviced for TURN—AROUNDS during time periods when servicing or maintenance manpower is not available. In the case of airports not operated exclusively by US military, the servicing indicated by the remarks will not always be available for US military aircraft. When transient alert services are not shown, facilities are unknown. NO PRIORITY BASIS—means that transient alert services will be provided only after all the requirements for mission/tactical assigned aircraft have been accomplished.

NOISE

Remarks that indicate noise information and/or abatement measures that exist in the vicinity of the airport.

AIRPORT REMARKS

The Attendance Schedule is the months, days and hours the airport is actually attended. Airport attendance does not mean watchman duties or telephone accessibility, but rather an attendant or operator on duty to provide at least minimum services (e.g., repairs, fuel, transportation).

Airport Remarks have been grouped in order of applicability. Airport remarks are limited to those items of information that are determined essential for operational use, i.e., conditions of a permanent or indefinite nature and conditions that will remain in effect for more than 30 days concerning aeronautical facilities, services, maintenance available, procedures or hazards, knowledge of which is essential for safe and efficient operation of aircraft. Information concerning permanent closing of a runway or taxiway will not be shown. A note “See Special Notices” shall be applied within this remarks section when a special notice applicable to the entry is contained in the Special Notices section of this publication.

Parachute Jumping indicates parachute jumping areas associated with the airport. See Parachute Jumping Area section of this publication for additional Information.

Landing Fee indicates landing charges for private or non–revenue producing aircraft. In addition, fees may be charged for planes that remain over a couple of hours and buy no services, or at major airline terminals for all aircraft.

Note: Unless otherwise stated, remarks including runway ends refer to the runway’s approach end.

PAC, 8 SEP 2022 to 3 NOV 2022
MILITARY REMARKS
Joint Civil/Military airports contain both Airport Remarks and Military Remarks. Military Remarks published for these airports are applicable only to the military. Military and joint Civil/Military airports contain only Military Remarks. Remarks contained in this section may not be applicable to civil users. When both sets of remarks exist, the first set is applicable to the primary operator of the airport. Remarks applicable to a tenant on the airport are shown preceded by the tenant organization, i.e., (A) (AF) (N) (ANG), etc. Military airports operate 24 hours unless otherwise specified. Airport operating hours are listed first (airport operating hours will only be listed if they are different than the airport attended hours or if the attended hours are unavailable) followed by pertinent remarks in order of applicability. Remarks will include information on restrictions, hazards, traffic pattern, noise abatement, customs/agriculture/immigration, and miscellaneous information applicable to the Military.

Type of restrictions:
CLOSED: When designated closed, the airport is restricted from use by all aircraft unless stated otherwise. Any closure applying to specific type of aircraft or operation will be so stated. USN/USMC/USAF airports are considered closed during non-operating hours. Closed airports may be utilized during an emergency provided there is a safe landing area.
OFFICIAL BUSINESS ONLY: The airfield is closed to all transient military aircraft for obtaining routine services such as fueling, passenger drop off or pickup, practice approaches, parking, etc. The airfield may be used by aircrews and aircraft if official government business (including civilian) must be conducted on or near the airfield and prior permission is received from the airfield manager.
AF OFFICIAL BUSINESS ONLY OR NAVY OFFICIAL BUSINESS ONLY: Indicates that the restriction applies only to service indicated.
PRIOR PERMISSION REQUIRED (PPR): Airport is closed to transient aircraft unless approval for operation is obtained from the appropriate commander through Chief, Airfield Management or Airfield Operations Officer. Official Business or PPR does not preclude the use of US military airports as an alternate for IFR flights. If a non-US military airport is used as a weather alternate and requires a PPR, the PPR must be requested and confirmed before the flight departs. The purpose of PPR is to control volume and flow of traffic rather than to prohibit it. Prior permission is required for all aircraft requiring transient alert service outside the published transient alert duty hours. All aircraft carrying hazardous materials must obtain prior permission as outlined in AFJI 11–204, AR 95–27, OPNAVINST 3710.7.

Note: OFFICIAL BUSINESS ONLY AND PPR restrictions are not applicable to Special Air Mission (SAM) or Special Air Resource (SPAR) aircraft providing person or persons aboard route designated Code 6 or higher as explained in AFJMAN 11–213, AR 95–11, OPNAVINST 3722–8J. Official Business Only or PPR do not preclude the use of the airport as an alternate for IFR flights.

AIRPORT MANAGER
The phone number of the airport manager.

WEATHER DATA SOURCES
Weather data sources will be listed alphabetically followed by their assigned frequencies and/or telephone number and hours of operation.

ASOS—Automated Surface Observing System. Reports the same as an AWOS–3 plus precipitation identification and intensity, and freezing rain occurrence;
AWOS—Automated Weather Observing System
AWOS–A—reports altimeter setting (all other information is advisory only).
AWOS–AV—reports altimeter and visibility.
AWOS–1—reports altimeter setting, wind data and usually temperature, dew point and density altitude.
AWOS–2—reports the same as AWOS–1 plus visibility.
AWOS–3—reports the same as AWOS–1 plus visibility and cloud/ceiling data.
AWOS–3P reports the same as the AWOS–3 system, plus a precipitation identification sensor.
AWOS–3PT reports the same as the AWOS–3 system, plus precipitation identification sensor and a thunderstorm/lightning reporting capability.
AWOS–3T reports the same as AWOS–3 system and includes a thunderstorm/lightning reporting capability. See AIM, Basic Flight Information and ATC Procedures for detailed description of Weather Data Sources.
AWOS–4—reports same as AWOS–3 system, plus precipitation occurrence, type and accumulation, freezing rain, thunderstorm and runway surface sensors.
LAWRS—Limited Aviation Weather Reporting Station where observers report cloud height, weather, obstructions to vision, temperature and dewpoint (in most cases), surface wind, altimeter and pertinent remarks.
LLWAS—indicates a Low Level Wind Shear Alert System consisting of a center field and several field perimeter anemometers.
SAWRS—identifies airports that have a Supplemental Aviation Weather Reporting Station available to pilots for current weather information.
SWSL—Supplemental Weather Service Location providing current local weather information via radio and telephone.
TDWR—indicates airports that have Terminal Doppler Weather Radar.
WSP—indicates airports that have Weather System Processor.

When the automated weather source is broadcast over an associated airport NAVAID frequency (see NAVAID line), it shall be indicated by a bold ASOS or AWOS followed by the frequency, identifier and phone number, if available.
COMMUNICATIONS

Airport terminal control facilities and radio communications associated with the airport shall be shown. When the call sign is not the same as the airport name the call sign will be shown. Frequencies shall normally be shown in ascending order with the primary frequency listed first. Frequencies will be listed, together with sectorization indicated by outbound radials, and hours of operation. Communications will be listed in sequence as follows:

Single Frequency Approach (SFA), Common Traffic Advisory Frequency (CTAF), Aeronautical Advisory Stations (UNICOM) or (AUNICOM), and Automatic Terminal Information Service (ATIS) along with their frequency is shown, where available, on the line following the heading “COMMUNICATIONS.” When the CTAF and UNICOM frequencies are the same, the frequency will be shown as CTAF/UNICOM 122.8.

The FSS telephone nationwide is toll free 1–800–WX–BRIEF (1–800–992–7433). When the FSS is located on the field it will be indicated as “on arpt.” Frequencies available at the FSS will follow in descending order. Remote Communications Outlet (RCO) providing service to the airport followed by the frequency and FSS RADIO name will be shown when available. FSS’s provide information on airport conditions, radio aids and other facilities, and process flight plans. Airport Advisory Service (AAS) is provided on the CTAF by FSS’s for select non–tower airports or airports where the tower is not in operation.

(See AIM, Para 4–1–9 Traffic Advisory Practices at Airports Without Operating Control Towers or AC 90–42C.)

Aviation weather briefing service is provided by FSS specialists. Flight and weather briefing services are also available by calling the telephone numbers listed.

Remote Communications Outlet (RCO) — An unmanned air/ground communications facility that is remotely controlled and provides UHF or VHF communications capability to extend the service range of an FSS.

Civil Communications Frequencies—Civil communications frequencies used in the FSS air/ground system are operated on 122.0, 122.2, 123.6; emergency 121.5; plus receive–only on 122.1.

a. 122.0 is assigned as the Enroute Flight Advisory Service frequency at selected FSS RADIO outlets.
b. 122.2 is assigned as a common enroute frequency.
c. 123.6 is assigned as the airport advisory frequency at select non–tower locations. At airports with a tower, FSS may provide airport advisories on the tower frequency when tower is closed.
d. 122.1 is the primary receive–only frequency at VOR's.
e. Some FSS's are assigned 50 kHz frequencies in the 122–126 MHz band (eg. 122.45). Pilots using the FSS A/G system should refer to this directory or appropriate charts to determine frequencies available at the FSS or remoted facility through which they wish to communicate.

Emergency frequency 121.5 and 243.0 are available at all Flight Service Stations, most Towers, Approach Control and RADAR facilities. Frequencies published followed by the letter “T” or “R”, indicate that the facility will only transmit or receive respectively on that frequency. All radio aids to navigation (NAVAID) frequencies are transmit only. In cases where communications frequencies are annotated with (R) or (E), (R) indicates Radar Capability and (E) indicates Emergency Frequency.

TERMINAL SERVICES

SFA—Single Frequency Approach.

CTAF—A program designed to get all vehicles and aircraft at airports without an operating control tower on a common frequency.

ATIS—A continuous broadcast of recorded non–control information in selected terminal areas.

D—ATIS—Digital ATIS provides ATIS information in text form outside the standard reception range of conventional ATIS via landline & link communications and voice message within range of existing transmitters.

AUNICOM—Automated UNICOM is a computerized, command response system that provides automated weather, radio check capability and airport advisory information selected from an automated menu by microphone clicks.

UNICOM—A non–government air/ground radio communications facility which may provide airport information.

PTO—Pilot to Dispatcher.

APP CON—Approach Control. The symbol ◆ indicates radar approach control.

TOWER—Control tower.

GCA—Ground Control Approach System.

GND CON—Ground Control.

GCO—Ground Communication Outlet—An unstaffed, remotely controlled, ground/ground communications facility. Pilots at uncontrolled airports may contact ATC and FSS via VHF to a telephone connection to obtain an instrument clearance or close a VFR or IFR flight plan. They may also get an updated weather briefing prior to takeoff. Pilots will use four “key clicks” on the VHF radio to contact the appropriate ATC facility or six “key clicks” to contact the FSS. The GCO system is intended to be used only on the ground.

DEP CON—Departure Control. The symbol ◆ indicates radar departure control.

CLNC DEL—Clearance Delivery.

CPDLC—Controller Pilot Data Link Communication. FANS ATC data communication capability from the aircraft to the ATC Data Link system.

PDC—Pre-Departure Clearance. ACARS-based clearance delivery capability from tower to gate printer or aircraft.

PRE TAXI CLNC—Pre taxi clearance.

VFR ADVSY SVC—VFR Advisory Service. Service provided by Non–Radar Approach Control. Advisory Service for VFR aircraft (upon a workload basis) ctc APP CON.

COMD POST—Command Post followed by the operator call sign in parenthesis.
PAC, 8 SEP 2022 to 3 NOV 2022

PMSV—Pilot-to–Metro Service call sign, frequency and hours of operation, when full service is other than continuous. PMSV installations at which weather observation service is available shall be indicated, following the frequency and/or hours of operation as “Wx obsn svc 1900–0000Z” or “other times” may be used when no specific time is given. PMSV facilities manned by forecasters are considered “Full Service”. PMSV facilities manned by weather observers are listed as “Limited Service”.

OPS—Operations followed by the operator call sign in parenthesis.

CON
RANGE
FLT FLW—Flight Following
MEDIWAC

NOTE: Communication frequencies followed by the letter “X” indicate frequency available on request.

AIRSPACE

Information concerning Class B, C, and part–time D and E surface area airspace shall be published with effective times, if available.

CLASS B—Radar Sequencing and Separation Service for all aircraft in CLASS B airspace.

CLASS C—Separation between IFR and VFR aircraft and sequencing of VFR arrivals to the primary airport.

TRA—Radar Sequencing and Separation Service for participating VFR Aircraft within a Terminal Radar Service Area.

Class C, D, and E airspace described in this publication is that airspace usually consisting of a 5 NM radius core surface area that begins at the surface and extends upward to an altitude above the airport elevation (charted in MSL for Class C and Class D).

Class E surface airspace normally extends from the surface up to but not including the overlying controlled airspace.

When part–time Class C or Class D airspace defaults to Class E, the core surface area becomes Class E. This will be formatted as:

AIRSPACE: CLASS C svc “times” ctc APP CON other times CLASS E

or

AIRSPACE: CLASS D svc “times” other times CLASS E.

When a part–time Class C, Class D or Class E surface area defaults to Class G, the core surface area becomes Class G up to, but not including, the overlying controlled airspace. Normally, the overlying controlled airspace is Class E airspace beginning at either 700’ or 1200’ AGL and may be determined by consulting the relevant VFR Sectional or Terminal Area Charts. This will be formatted as:

AIRSPACE: CLASS C svc “times” ctc APP CON other times CLASS G

or

AIRSPACE: CLASS D svc “times” other times CLASS G

or

AIRSPACE: CLASS E svc “times” other times CLASS G

NOTE: AIRSPACE SVC “TIMES” INCLUDE ALL ASSOCIATED ARRIVAL EXTENSIONS. Surface area arrival extensions for instrument approach procedures become part of the primary core surface area. These extensions may be either Class D or Class E airspace and are effective concurrent with the times of the primary core surface area. For example, when a part–time Class C, Class D or Class E surface area defaults to Class G, the associated arrival extensions will default to Class G at the same time. When a part–time Class C or Class D surface area defaults to Class E, the arrival extensions will remain in effect as Class E airspace.

NOTE: CLASS E AIRSPACE EXTENDING UPWARD FROM 700 FEET OR MORE ABOVE THE SURFACE, DESIGNATED IN CONJUNCTION WITH AN AIRPORT WITH AN APPROVED INSTRUMENT PROCEDURE.

Class E 700’ AGL (shown as magenta vignette on sectional charts) and 1200’ AGL (blue vignette) areas are designated when necessary to provide controlled airspace for transitioning to/from the terminal and enroute environments. Unless otherwise specified, these 700’ / 1200’ AGL Class E airspace areas remain in effect continuously, regardless of airport operating hours or surface area status. These transition areas should not be confused with surface areas or arrival extensions.

(See Chapter 3, AIRSPACE, in the Aeronautical Information Manual for further details)

VOR TEST FACILITY (VOT)

The VOT transmits a signal which provided users a convenient means to determine the operational status and accuracy of an aircraft VOR receiver while on the ground. Ground based VOTs and the associated frequency shall be shown when available. VOTs are also shown with identifier, frequency and remarks in the VOR Receiver Check section in the back of this publication.
The NAVAID information is tabulated as indicated in the following sample:

NAVAIDs with Single SSV (VOR, DME, TACAN, NDB, NDB/DME)

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Frequency</th>
<th>Identifier</th>
<th>Geographical Position</th>
<th>Site Elevation</th>
<th>Magnetic Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAME (L) VOR</td>
<td>117.55</td>
<td>ABE</td>
<td>N40°43.60' W75°27.30'</td>
<td>180° 4.1 NM to fl.</td>
<td>1110/8E</td>
</tr>
</tbody>
</table>

NAVAIDs with Two SSVs (VOR/DME, VORTAC)

SSV for each component shown in paired parentheses with the VOR SSV shown first followed by the DME or TACAN SSV.

<table>
<thead>
<tr>
<th>Classes</th>
<th>Frequency</th>
<th>Identifier</th>
<th>Geographical Position</th>
<th>Site Elevation</th>
<th>Magnetic Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME (VL) (L) ABVORTAC</td>
<td>117.55</td>
<td>ABE</td>
<td>Channel 12(2)(Y)</td>
<td>N40°43.60' W75°27.30'</td>
<td>180° 4.1 NM to fl.</td>
</tr>
</tbody>
</table>

VOR unusable 020°–060° byd 26 NM blo 3,500'

Restriction within the normal altitude/range of the navigational aid (See primary alphabetical listing for restrictions on VORTAC and VOR/DME).

Note: Those DME channel numbers with a (Y) suffix require TACAN to be placed in the "Y" mode to receive distance information.

ASR/PAR—Indicates that Surveillance (ASR) or Precision (PAR) radar instrument approach minimums are published in the U.S. Terminal Procedures. Only part–time hours of operation will be shown.

RADIO CLASS DESIGNATIONS

VOR/DME/TACAN Standard Service Volume (SSV) Classifications

<table>
<thead>
<tr>
<th>SSV Class</th>
<th>Altitudes</th>
<th>Distance (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) Terminal</td>
<td>1000' to 12,000'</td>
<td>25</td>
</tr>
<tr>
<td>(L) Low Altitude</td>
<td>1000' to 18,000'</td>
<td>40</td>
</tr>
<tr>
<td>(H) High Altitude</td>
<td>1000' to 14,500'</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>14,500' to 18,000'</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>18,000' to 45,000'</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>45,000' to 60,000'</td>
<td>100</td>
</tr>
<tr>
<td>(VL) VOR Low</td>
<td>1000' to 5,000'</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>5,000' to 18,000'</td>
<td>70</td>
</tr>
<tr>
<td>(VH) VOR High</td>
<td>1000' to 5,000'</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>5,000' to 14,500'</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>14,500' to 18,000'</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>18,000' to 45,000'</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>45,000' to 60,000'</td>
<td>100</td>
</tr>
<tr>
<td>(DL) DME Low & (DH) DME High*</td>
<td>1000' to 12,900'</td>
<td>40 increasing to 130</td>
</tr>
<tr>
<td>(DL) DME Low</td>
<td>12,900' to 18,000'</td>
<td>130</td>
</tr>
<tr>
<td>(DH) DME High</td>
<td>12,900' to 45,000'</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>45,000' to 60,000'</td>
<td>100</td>
</tr>
</tbody>
</table>

*Between 1000’ to 12,900’, DME service volume follows a parabolic curve used by flight management computers.

NOTES: Additionally, High Altitude facilities provide Low Altitude and Terminal service volume and Low Altitude facilities provide Terminal service volume. Altitudes are with respect to the station's site elevation. Coverage is not available in a cone of airspace directly above the facility. In some cases local conditions (terrain, buildings, trees, etc.) may require that the service volume be restricted. The public shall be informed of any such restriction by a remark in the NAVAID entry in this publication or by a Notice to Airmen (NOTAM).
The term VOR is, operationally, a general term covering the VHF omnidirectional bearing type of facility without regard to the fact that the power, the frequency protected service volume, the equipment configuration, and operational requirements may vary between facilities at different locations.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Automatic Weather Broadcast.</td>
</tr>
<tr>
<td>DF</td>
<td>Direction Finding Service.</td>
</tr>
<tr>
<td>DME</td>
<td>UHF standard (TACAN compatible) distance measuring equipment.</td>
</tr>
<tr>
<td>DME(Y)</td>
<td>UHF standard (TACAN compatible) distance measuring equipment that require TACAN to be placed in the “Y” mode to receive DME.</td>
</tr>
<tr>
<td>GS</td>
<td>Glide slope.</td>
</tr>
<tr>
<td>H</td>
<td>Non-directional radio beacon (homing), power 50 watts to less than 2,000 watts (50 NM at all altitudes).</td>
</tr>
<tr>
<td>HH</td>
<td>Non-directional radio beacon (homing), power 2,000 watts or more (75 NM at all altitudes).</td>
</tr>
<tr>
<td>H-SAB</td>
<td>Non-directional radio beacons providing automatic transcribed weather service.</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System (voice, where available, on localizer channel).</td>
</tr>
<tr>
<td>IM</td>
<td>Inner marker.</td>
</tr>
<tr>
<td>LDA</td>
<td>Localizer Directional Aid.</td>
</tr>
<tr>
<td>LMM</td>
<td>Compass locator station when installed at middle marker site (15 NM at all altitudes).</td>
</tr>
<tr>
<td>LOM</td>
<td>Compass locator station when installed at outer marker site (15 NM at all altitudes).</td>
</tr>
<tr>
<td>MH</td>
<td>Non-directional radio beacon (homing) power less than 50 watts (25 NM at all altitudes).</td>
</tr>
<tr>
<td>MM</td>
<td>Middle marker.</td>
</tr>
<tr>
<td>OM</td>
<td>Outer marker.</td>
</tr>
<tr>
<td>S</td>
<td>Simultaneous range homing signal and/or voice.</td>
</tr>
<tr>
<td>SABH</td>
<td>Non-directional radio beacon not authorized for IFR or ATC. Provides automatic weather broadcasts.</td>
</tr>
<tr>
<td>SDF</td>
<td>Simplified Direction Facility.</td>
</tr>
<tr>
<td>TACAN</td>
<td>UHF navigational facility–omnidirectional course and distance information.</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF navigational facility–omnidirectional course only.</td>
</tr>
<tr>
<td>VOR/DME</td>
<td>Collocated VOR navigational facility and UHF standard distance measuring equipment.</td>
</tr>
<tr>
<td>VORTAC</td>
<td>Collocated VOR and TACAN navigational facilities.</td>
</tr>
<tr>
<td>W</td>
<td>Without voice on radio facility frequency.</td>
</tr>
<tr>
<td>Z</td>
<td>VHF station location marker at a LF radio facility.</td>
</tr>
</tbody>
</table>
ILS Facility Performance Classification Codes

Codes define the ability of an ILS to support autoland operations. The two portions of the code represent Official Category and farthest point along a Category I, II, or III approach that the Localizer meets Category III structure tolerances.

Official Category: I, II, or III; the lowest minima on published or unpublished procedures supported by the ILS.

Farthest point of satisfactory Category III Localizer performance for Category I, II, or III approaches: A – 4 NM prior to runway threshold, B – 3500 ft prior to runway threshold, C – glide angle dependent but generally 750–1000 ft prior to threshold, T – runway threshold, D – 3000 ft after runway threshold, and E – 2000 ft prior to stop end of runway.

ILS information is tabulated as indicated in the following sample:

<table>
<thead>
<tr>
<th>ILS/DME</th>
<th>I–ORL</th>
<th>Chan 22</th>
<th>Rwy 18</th>
<th>Class IIE</th>
<th>LOM HERNY NDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>108.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ILS Facility Performance Classification Code

<table>
<thead>
<tr>
<th>VHF FREQUENCY</th>
<th>TACAN CHANNEL</th>
<th>VHF FREQUENCY</th>
<th>TACAN CHANNEL</th>
<th>VHF FREQUENCY</th>
<th>TACAN CHANNEL</th>
<th>VHF FREQUENCY</th>
<th>TACAN CHANNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>108.10</td>
<td>18X</td>
<td>108.55</td>
<td>22Y</td>
<td>111.05</td>
<td>47Y</td>
<td>114.85</td>
<td>95Y</td>
</tr>
<tr>
<td>108.30</td>
<td>20X</td>
<td>108.65</td>
<td>23Y</td>
<td>111.15</td>
<td>48Y</td>
<td>114.95</td>
<td>96Y</td>
</tr>
<tr>
<td>108.50</td>
<td>22X</td>
<td>108.75</td>
<td>24Y</td>
<td>111.25</td>
<td>49Y</td>
<td>115.05</td>
<td>97Y</td>
</tr>
<tr>
<td>108.70</td>
<td>24X</td>
<td>108.85</td>
<td>25Y</td>
<td>111.35</td>
<td>50Y</td>
<td>115.15</td>
<td>98Y</td>
</tr>
<tr>
<td>108.90</td>
<td>26X</td>
<td>108.95</td>
<td>26Y</td>
<td>111.45</td>
<td>51Y</td>
<td>115.25</td>
<td>99Y</td>
</tr>
<tr>
<td>109.10</td>
<td>28X</td>
<td>109.05</td>
<td>27Y</td>
<td>111.55</td>
<td>52Y</td>
<td>115.35</td>
<td>100Y</td>
</tr>
<tr>
<td>109.30</td>
<td>30X</td>
<td>109.15</td>
<td>28Y</td>
<td>111.65</td>
<td>53Y</td>
<td>115.45</td>
<td>101Y</td>
</tr>
<tr>
<td>109.50</td>
<td>32X</td>
<td>109.25</td>
<td>29Y</td>
<td>111.75</td>
<td>54Y</td>
<td>115.55</td>
<td>102Y</td>
</tr>
<tr>
<td>109.70</td>
<td>34X</td>
<td>109.35</td>
<td>30Y</td>
<td>111.85</td>
<td>55Y</td>
<td>115.65</td>
<td>103Y</td>
</tr>
<tr>
<td>109.90</td>
<td>36X</td>
<td>109.45</td>
<td>31Y</td>
<td>111.95</td>
<td>56Y</td>
<td>115.75</td>
<td>104Y</td>
</tr>
<tr>
<td>110.10</td>
<td>38X</td>
<td>109.55</td>
<td>32Y</td>
<td>113.35</td>
<td>80Y</td>
<td>115.85</td>
<td>105Y</td>
</tr>
<tr>
<td>110.30</td>
<td>40X</td>
<td>109.65</td>
<td>33Y</td>
<td>113.45</td>
<td>81Y</td>
<td>115.95</td>
<td>106Y</td>
</tr>
<tr>
<td>110.50</td>
<td>42X</td>
<td>109.75</td>
<td>34Y</td>
<td>113.55</td>
<td>82Y</td>
<td>116.05</td>
<td>107Y</td>
</tr>
<tr>
<td>110.70</td>
<td>44X</td>
<td>109.85</td>
<td>35Y</td>
<td>113.65</td>
<td>83Y</td>
<td>116.15</td>
<td>108Y</td>
</tr>
<tr>
<td>110.90</td>
<td>46X</td>
<td>109.95</td>
<td>36Y</td>
<td>113.75</td>
<td>84Y</td>
<td>116.25</td>
<td>109Y</td>
</tr>
<tr>
<td>111.10</td>
<td>48X</td>
<td>110.05</td>
<td>37Y</td>
<td>113.85</td>
<td>85Y</td>
<td>116.35</td>
<td>110Y</td>
</tr>
<tr>
<td>111.30</td>
<td>50X</td>
<td>110.15</td>
<td>38Y</td>
<td>113.95</td>
<td>86Y</td>
<td>116.45</td>
<td>111Y</td>
</tr>
<tr>
<td>111.50</td>
<td>52X</td>
<td>110.25</td>
<td>39Y</td>
<td>114.05</td>
<td>87Y</td>
<td>116.55</td>
<td>112Y</td>
</tr>
<tr>
<td>111.70</td>
<td>54X</td>
<td>110.35</td>
<td>40Y</td>
<td>114.15</td>
<td>88Y</td>
<td>116.65</td>
<td>113Y</td>
</tr>
<tr>
<td>111.90</td>
<td>56X</td>
<td>110.45</td>
<td>41Y</td>
<td>114.25</td>
<td>89Y</td>
<td>116.75</td>
<td>114Y</td>
</tr>
<tr>
<td>108.05</td>
<td>17Y</td>
<td>110.55</td>
<td>42Y</td>
<td>114.35</td>
<td>90Y</td>
<td>116.85</td>
<td>115Y</td>
</tr>
<tr>
<td>108.15</td>
<td>18Y</td>
<td>110.65</td>
<td>43Y</td>
<td>114.45</td>
<td>91Y</td>
<td>116.95</td>
<td>116Y</td>
</tr>
<tr>
<td>108.25</td>
<td>19Y</td>
<td>110.75</td>
<td>44Y</td>
<td>114.55</td>
<td>92Y</td>
<td>117.05</td>
<td>117Y</td>
</tr>
<tr>
<td>108.35</td>
<td>20Y</td>
<td>110.85</td>
<td>45Y</td>
<td>114.65</td>
<td>93Y</td>
<td>117.15</td>
<td>118Y</td>
</tr>
<tr>
<td>108.45</td>
<td>21Y</td>
<td>110.95</td>
<td>46Y</td>
<td>114.75</td>
<td>94Y</td>
<td>117.25</td>
<td>119Y</td>
</tr>
</tbody>
</table>
28

AIRPORT/FACILITY DIRECTORY LEGEND
)5(48(1&<3$,5,1*7$%/(
7KHIROORZLQJLVDOLVWRISDLUHG925,/69+)IUHTXHQFLHVZLWK7$&$1FKDQQHOV
7$&$1
&+$11(/
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<

9+)
)5(48(1&<



























































7$&$1
&+$11(/
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<

9+)
)5(48(1&<



























































7$&$1
&+$11(/
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<

9+)
)5(48(1&<



























































7$&$1
&+$11(/
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<
;
<

9+)
)5(48(1&<





















































33 &2001$9:($7+(55(0$5.67KHVHUHPDUNVFRQVLVWRISHUWLQHQWLQIRUPDWLRQDIIHFWLQJWKHFXUUHQWVWDWXVRI
FRPPXQLFDWLRQV1$9$,'VZHDWKHUDQGLQWKHDEVHQFHRIDLUJURXQGUDGLRRXWOHWVLGHQWLILHGLQWKH&RPPXQLFDWLRQVVHFWLRQVRPH
DSSURDFKFRQWUROIDFLOLWLHVZLOOKDYHDFOHDUDQFHGHOLYHU\SKRQHQXPEHUOLVWHGKHUH

PAC, 8 SEP 2022 to 3 NOV 2022


INTENTIONALLY
LEFT
BLANK
GENERAL INFORMATION
AIRPORT LOCATOR INDEX

AMERICAN SAMOA
- OFU ISLAND
- Ofu .. 31
- TAU ISLAND
- Filiuta .. 31
- TUTUULA ISLAND
-Pago Pago Intl ... 31

FEDERATED STATES OF MICRONESIA
- KOSRAE ISLAND
 - Kosrae .. 33
- Pohnpei Island
 - Pohnpei Intl .. 33
- *ULITHI ATOLL
 - Ulithi .. 34
- WENO ISLAND
 - Chuuk Intl .. 34
 - Yap Intl .. 35

GUAM
- Guam Intl .. 36

HAWAII
- HAWAII
 - Bradshaw Army Airfield 37
 - Hilo Intl .. 38
 - Kona Intl at Keahole (Ellison Onizuka) 39
 - Upolu .. 40
 - Waima-Kohala ... 41
- KAUAI
 - Barking Sands PMRF 41
 - Lihue ... 42
 - Port Allen ... 43
 - Princeville .. 43
- LANAI
 - Lanai ... 44
- MAUI
 - Hana .. 44
 - Kahului .. 45
 - Kapalua .. 46
- MOLOKAI
 - Kalaupapa .. 47
 - Molokai .. 48
- OAHU
 - Dillingham Airfield 49
 - Honolulu (Daniel K Inouye Intl) 50
 - Kalaeloa (John Rodgers Fld) 53
 - Wheeler AAF ... 54
- TERN ISLAND
 - French Frigate Shoals 54

KIRIBATI
- KIRITIMATI (CHRISTMAS ISLAND)
 - Cassidy Intl .. 55

MARSHALL ISLANDS
- *ARNO ATOLL
 - Ile ... 56
 - Tinak .. 56
- ENEWETAK ATOLL
 - Enewetak Aux AF 56
- *JABOR JALUIT ATOLL
 - Jaluit .. 56
- KILI ISLAND
 - Kili .. 56
- KWAJALEIN ATOLL
 - Bu cholz AAF .. 57
 - Dyess AAF .. 57
- MAJURO ATOLL
 - Amata Kabua Intl 58
- *MEJIT ATOLL
 - Mejit .. 58
 - MILI ATOLL
 - Mili ... 59
- *NAMORIK ATOLL
 - Namorik .. 59
- TAORA ISLAND/MALOELAP ATOLL
 - Maloelap .. 59
- *UTIRIK ATOLL
 - Utirik ... 59
- WOTJE ATOLL
 - Wotje .. 59

MIDWAY ATOLL
- MIDWAY ATOLL
 - Henderson Fld .. 60

NORTHERN MARIANA ISLANDS
- PAGAN ISLAND
 - Pagan Airstrip .. 61
- ROTA ISLAND
 - Benjamin Taisacan Manglona Intl 61
- SAIPAN ISLAND
 - Commonwealth Health Center Heliport 62
 - Francisco C Ada/Saipan Intl 62
- TINIAN ISLAND
 - Tinian Intl ... 63

PALAU
- ANGAUR ISLAND
 - Angaur Airstrip .. 64
- BABELTHUAP ISLAND
 - Babelthuap/Koror 64
 - Peleliu .. 64

WAKE ISLAND
- Wake Island Airfield 65

*indicates unknown datum

PAC, 8 SEP 2022 to 3 NOV 2022
OFU ISLAND

OFU (ZS8)(NSAS) 1 SE UTC–11 S14°11.06´ W169°40.21´

- **Class III, ARFF Index A**
- **NOTAM FILE HNL**
- **RWY 08–26:** H1980X60 (CONC–WC) S–12.5 D–12.5 PCN 7 R/C/Z/U
- **RWY 08:** Tree.
- **RWY 26:** Tree.

AIRPORT REMARKS: Attended during scheduled flights only. To land ctc airport manager Pago Pago Intl, call 699–9101. Brush and trees Rwy 08–26 along ldg area encroach into imaginary sfc defined by FAR PART 77. Boulders/rocks adjacent to Rwy 08 apch. 400´ MSL powerlines between OFU and Olosega Islands. Numerous high voltage transformer boxes 3´ high along north side of rwy. Numerous hydrants 4+´ along north side of rwy.

AIRPORT MANAGER: (684) 699–9101

COMMUNICATIONS: CTAF/UNICOM 122.95

COMM/NAV/WEATHER REMARKS: For arpt information ctc New Zealand NOTAM and briefing office (643) 358–1688/FAX (643) 358–9192.

TAU ISLAND

FITIUTA (FAQ)(NSFQ) 0 N UTC–11 S14°12.97´ W169°25.41´

- **Class III, ARFF Index A**
- **NOTAM FILE HNL**
- **RWY 12–30:** H3200X75 (CONC–GRVD) S–12.5 PCN 7 R/C/Z/U MIRL
- **RWY 12:** REIL. PAPI(P2L)—GA 3.0º TCH 39´.
- **RWY 30:** REIL. PAPI(P2L)—GA 3.0º TCH 39´.

SERVICE: LGT ACTVT REIL Rwys 12 and 30; PAPI Rwys 12 and 30; MIRL Rwys 12–30—CTAF (122.9). Rwy 12 and Rwy 30 PAPI OTS indef.

AIRPORT REMARKS: Attended 1600–0400Z.

AIRPORT MANAGER: (684) 699–9101

COMMUNICATIONS: CTAF 122.9

TUTUILA ISLAND

Pago Pago Intl (PPG)(NSTU) 3 SW UTC–11 S14°19.90´ W170°42.69´

- **Class I, ARFF Index C**
- **NOTAM FILE PPG**
- **RWY 05–23:** H10001X150 (ASPH–GRVD) S–75, D–170, 2D–250, 2D/2D2–600 PCN 60 F/A/W/T HIRL
- **RWY 05:** MALSR. PAPI(P4L)—GA 3.25º TCH 57´. Thld dsplcd 1002´. Hill. Rgt tfc.
- **RWY 23:** PAPI(P4L)—GA 3.0º TCH 75´. Thld dsplcd 790´. Fence.
- **RWY 08–26:** H3801X100 (ASPH–GRVD) S–75, D–150, 2D–230, 2D/2D2–550 PCN 45 F/A/W/T HIRL
- **RWY 08:** Rgt tfc.

SERVICE: SB FUEL 100, JET A1+ LGT Dusk–Dawn. ACTIVATE MALSR Rwy 05; PAPI Rwy 05 and Rwy 23; HIRL Rwy 05–23 and Rwy 08–26; twy lghts freq—118.3.

AIRPORT REMARKS: Attended continuously. Olotele Mt. 1617´ MSL 3.5 miles west of thld Rwy 08. 399´ MSL obstruction light on LOG NDB located on hill 2.0 SM southwest of thld Rwy 05. Permanently lighted and marked 226´ tower atop Mt. Alava 4.3 SM north-northeast of airport. All flights (except scheduled) prior permission from airport manager required with 24 hour prior notice. All aircraft transitioning Pago Pago (except commercial carriers) must make fuel arrangements with PPG at (684) 733–3158. All acft exceeding 100,000 lbs GWT upon touchdown taxi to thld turn around before taxiing to apron. Acft under 100,000 lbs may make a turn–around wherever feasible. Sea spray from surf and blow holes may drift across Rwy 05–23 under rough sea conditions. Minor power plant repairs only. Customs available. Landing fee.

CONTINUED ON NEXT PAGE
AIRPORT/FACILITY DIRECTORY
CONTINUED FROM PRECEDING PAGE

AIRPORT MANAGER: (684) 733–3076
COMMUNICATIONS: CTAF 122.9
FALEOLO APP/DEP CON 118.1
RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

(H) VORTACW 112.5 TUT Chan 72 S14°19.96′ W170°42.50′ at fld. 7.1/12E.
VOR unusable:
005°–032° byd 26 NM blo 16,000′
050°–228° byd 24 NM blo 4,000′
228°–287° byd 34 NM blo 16,000′
287°–005° byd 18 NM
345°–005°
TACAN AZIMUTH unusable:
005°–032° byd 32 NM blo 16,000′
032°–050° byd 34 NM blo 16,000′
287°–005° byd 13 NM
345°–005° byd 5 NM blo 6400′
DME unusable:
005°–032° byd 20 NM blo 16,000′
345°–005° byd 5 NM blo 6400′
NDB (HHW) 403 TUT S14°19.93′ W170°43.17′ at fld. 12E. Unmonitored.
ILS/DME 110.3 I–TUT Chan 40 Rwy 05. Unmonitored.

COMM/NAV/WEATHER REMARKS: For IFR clearances ctc Faleolo Air Traffic Control unit phone (685) 42050 or Primary Apch freq 118.1, Secondary Apch freq 118.5, HF freq 6.553. Christchurch NZ NOF is issuing agency for PAGO PAGO Intl NOTAMS ctc NR 64 33581688. For NOTAM ctc New Zealand (643) 358-1688. FSS: NEW ZEALAND.
FEDERATED STATES OF MICRONESIA

KOSRAE ISLAND

KOSRAE (TTK)(PTSA) 6 NW UTC+11 N5º21.42´ E162º57.50´ P-18

12 NOTAM FILE HNL

RWY 05–23: H5752X150 (ASPH–GRVD) D–152, 2S–175 MIRL

RWY 05: REIL. PAPI(P4L)—GA 3.0º TCH 52´.

RWY 23: REIL. PAPI(P4L)—GA 3.0º TCH 52´. Rgt tfc.

SERVICE: FUEL JET A1 LGT

AIRPORT REMARKS: Attended Mon–Fri 1900–0300Z, Sat 2000–0100Z, Sun on call. Flt plan must be filed 12 hrs prior to estimated time of arrival, include Pohnpei Intl (PTPN) as address of flt plan. PPR for landing to be filed 48 hr in advance with FSM Secretary of Transportation, Communications and Infrastructure. Please see FSM Dept of Transportation, Communications, and Infrastructure, Division of Civil Aviation website for procedures and forms used to request PPR into FSM: HTTP://WWW.ICT.FM/CIVILAVIATION/FORMS.HTML. Unmarked/unlighted terrain at elev 797´ MSL located approximately 7200´ southeast of arpt. Ship vessels with mast as high as 200´ MSL may be traversing harbor entrance located South of rwy. For fuel transient acft must make prior arrangements by calling (691) 370–2477.

AIRPORT MANAGER: (691) 370–2154

COMMUNICATIONS: CTAF 123.6

RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

POHNPEI ISLAND

POHNPEI INTL (PNI)(PTPN) 1 N UTC+11 N6º59.11´ E158º12.59´ P-1A

9 B AOE NOTAM FILE HNL

RWY 09–27: H6600X150 (ASPH–GRVD) S–75, D–170, 2S–175, 2D–290 MIRL

RWY 09: REIL. PAPI(P4L)—GA 3.0º TCH 51´.

RWY 27: REIL. PAPI(P4L)—GA 3.0º TCH 50´. Rgt tfc.

SERVICE: FUEL 100, 100LL, JET A1+ LGT ACTIVATE MIRL Rwy 09–27 and Twy lgts—CTAF. For rotating beacon, PAPI Rwy 09 and Rwy 27, wind cone lgts ctc Pohnpei Radio 123.6.

AIRPORT REMARKS: Attended Mon–Fri 1900–0400Z, Sat 1900–0200Z, Sun 0600–1300Z. PPR for landing to be filed 48 hr in advance with Federated States of Micronesia Secretary of Transportation, Communications and Infrastructure. Please see FSM Dept of Transportation, Communications, and Infrastructure, Division of Civil Aviation website for procedures and forms used to request PPR into FSM: HTTP://WWW.ICT.FM/CIVILAVIATION/FORMS.HTML. Security on duty 24hr/7 days, ARFF and SAWR on duty for non–scheduled flights. 110´ tower located at 06º58´58"N, 158º12´32"E, obstruction lighted. Flt plan must be filed 12 hrs prior to estimated time of arrival, ctc arpt manager (691) 320–2682. One hour notice required to clear rwy. Center of rwy has asph patch, hard breaking not recommended. Obstruction lighted 662´ Peipalap Peak located 4900´ SW of threshold. Be alert to ships with maximum height of 150´ in Pohnpei channel 400´ off approach end of Rwy 09. For advisory contact Pohnpei Radio prior to final approach or departure. Construction in progress on airfield. Fuel 100 and 100LL stored off airport. Available on request. For fuel unscheduled acft prior notice required call (671) 649–8861. Landing fee.

AIRPORT MANAGER: (691) 320–2793

COMMUNICATIONS: CTAF 123.6

RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

COMM/NAV/WEATHER REMARKS: LAA available 1 hr prior to scheduled acft arrivals and until 1/2 hr after departure.

PAC, 8 SEP 2022 to 3 NOV 2022
ULITHI ATOLL

ULITHI (TT02) 0 N UTC+10 N10°01.20´ E139°47.39´
16 NOTAM FILE HNL Not insp.

AIRPORT REMARKS: Unattended. PPR from FSM DOT, COMMUNICATION and INFRASTRUCTURE: CIVIL AVIATION DIVISION (691) 320–2865. Remain in ctc with PTYA.

AIRPORT MANAGER: 9731/9300

COMMUNICATIONS: CTAF 123.6

YAP RADIO 123.6 daylight only.

WENO ISLAND

CHUUK INTL (TKK/PTKK) 0 SE UTC+10 N7°27.71´ E151°50.58´

10 B AOE NOTAM FILE HNL

RWY 04: REIL, PAPI(P4L)—GA 3.0° TCH 51´. Berm.

SERVICE: FUEL 100LL, JET A1+ LGT PPR for rotating beacon contact Chuuk Radio 123.6. ACTIVATE MIRL VASIs and REILs Rwy 4–22—123.6. Rwy 22 PAPI unusable byd 7° left of cntrln.

AIRPORT REMARKS: Attended Mon–Fri 1730–0230Z, Sat 1730–0230Z, Sun 0500–1300Z. Closed SS–SR. Flt plan must be filed 12 hrs prior to estimated time of arrival, include Pohnpei Intl (PTPN) as address of flt plan. PPR from Chief, Immigration and Labor, Federated States of Micronesia, Kolonia, Pohnpei 96941. 24 hr notice to Chuuk Arpt Manager and Chuuk Chief of Immigration stating acft type and registration, persons on board and their citizenship. PPR for ldg must be filed 48 hrs in advance with the Federated States of Micronesia Secretary of Transportation, Communication and Infrastructure. PPR from FSM DOT, COMMUNICATION and INFRASTRUCTURE: CIVIL AVIATION DIVISION 691–320–2865. Remain in ctc with PTYA. Please see FSM Dept of Transportation Communication and Infrastructure Division of Civil Aviation website for procedures and forms used to request PPR into FSM. HTTP://WWW.ICT.FM/CIVILAVIATION/FORMS.HTML. Rwy 04 and Rwy 22 concrete berm at each end of rwy pavement. Fast rising terrain to 751´ MSL within 0.5 mile immediately SE of runway.

AIRPORT MANAGER: (691) 330–2352

COMMUNICATIONS: CTAF 123.6

CHUUK RADIO 123.6 LAA. 5205X USB emerg only, 2182 emerg only.

RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

TRUK NDB/DME (HW) 375 TKK Channel 111 N7°27.54´ E151°50.51´ at fld. 6/5E.

DME portion unusable:
040°–205° byd 8 NM blo 7,000´
040°–205° byd 19 NM blo 11,000´
040°–205° byd 29 NM blo 22,000´

COMM/NAV/WEATHER REMARKS: DME Chan 111 paired with 116.4.

TRUK N7°27.54´ E151°50.51´ NOTAM FILE HNL.

NDB/DME (HW) 375 TKK Channel 111 at Chuuk Intl. 6/5E.

DME portion unusable:
040°–205° byd 8 NM blo 7,000´
040°–205° byd 19 NM blo 11,000´
040°–205° byd 29 NM blo 22,000´
YAP ISLAND

YAP INTL (T11)(PTYA) O SW UTC+10 N9º29.93´ E138º04.95´

91 B AOE NOTAM FILE HNL

RWY 07: REIL PAPI(P4L)—GA 3.0º TCH 47´. Ground.

AIRPORT REMARKS: Attended Mon–Fri 1730–0230Z, Sat on call, Sun on call. Sat 24 hrs PPR with filed Flt plan or phone (691) 350–2128 Fax (691) 350–2344. PPR for ldg to be filed 48 hrs in advance with the Secretary of Transportation, Federated States of Micronesia, P.O. Box PS–2, Pohnpei, FSM 96941, phone (011)(691) 320–2865. Please see FSM DOTC&I: div. of civil aviation´s website for procedures and forms used to request PPR into FSM; HTTP://WWW.TCI.GOV.FM/CIVILAVIATION/FORMS.HTML. Be alert when taxiing, cracks on right and left side of twy. Landing fee. Transient acft must make prior arrangements for fuel with Mobil Oil Guam, expect delay.

AIRPORT MANAGER: (691) 350–2128

COMMUNICATIONS: CTAF 123.6

YAP RADIO 123.6 LAA. 5205X USB emerg only, 2182 emerg only.

RADIO AIDS TO NAVIGATION:

YAP NDB/DME (HW/DME) 317 YP Chan 122 N09º29.97´ E138º05.31´ at fld. 80/1E.

DME unusable:

001º–009º byd 10 NM
010º–035º byd 10 NM blo 12,000´
035º–075º byd 25 NM blo 4,000´
076º–105º byd 25 NM
280º–000º byd 25 NM blo 12,000´

COMM/NAV/WEATHER REMARKS: Chan 122 paired with VHF freq 117.5.
GUAM

GUAM

ANDERSEN

H—TACAN 1117

UGM Chan 054 at Andersen AFB. 615/2E. No NOTAM MP Mon, Wed 2000–2300Z.

GUAM INTL

(GUM)(PGUM) 3 NE UTC+10

N13º29.04´ E144º47.83´

Chan 105

TPA—1307(1002)

Class I, ARFF Index E NOTAM FILE GUM

Rwy 06R: MALSR. PAPI(P4L)—GA 3.0º TCH 73’. Thld displaced 1003’. 0.5% up.

Rwy 24R: PAPI(P4L)—GA 3.0º TCH 75’. Rgt tcf. 0.7% down.

Rwy 06R: MALSR. PAPI(P4R)—GA 3.0º TCH 76’. 0.7% up.

Rwy 24L: PAPI(P4L)—GA 3.0º TCH 75’. Thld displaced 1004’. Hill. Rgt tcf. 0.5% down.

RUNWAY DECLARED DISTANCE INFORMATION

Rwy 06L: TORA–12015 TODA–12015 ASDA–12015 LDA–11015

Rwy 06R: TORA–10014 TODA–10014 ASDA–10014 LDA–10014

Rwy 24L: TORA–9714 TODA–9714 ASDA–9714 LDA–8710

Rwy 24R: TORA–12015 TODA–12015 ASDA–12015 LDA–12015

SERVICE: S2 FUEL 100LL, JET A1 OX 1, 2, 3, 7

GND CON: Rwy 24L PAPI unusable byd 5º left of centerline.

AIRPORT REMARKS: Attended continuously. Rwy 06L–24R less than 1000’ overrun south end & 450’ overrun north end.

Lighted tower 780’ 1.3 NM east-northeast of Rwy 24L thld. Rising terrain 75’ from Rwy 24L thld 140’ east of centerline extended +8’. Departing VFR actf maintain rwy heading until past departure end of rwy and reaching 1000’ AGL; right pattern 24L/R do not exceed 1500’ AGL in tfc pattern. Class III actf are prohibited from making any turns onto or off Tfw Golf (south) while utilizing Tfw Echo. The first 500’ of the left shoulder of Rwy 24L is not visible from the twr. Pilots are advised to caution for any presence of wildlife in that area. For taxiing B747-8 actf on Tfw K facing the actf prkg apn from Gates 5-16 at the main trml, max taxiing speed shall be no more than 15 mph. For the B747-8, dur Rwy 24L and 24R ops and due to jet blast effects at Gate 14, 16 and 18, the B747-8 will be towed from Gate 4 on Tfw K to Tfw J with the actf positioned on Tfw J facing toward Rwy 24R. Dur taxiing of the B747-8 b/t Gates 5-16, all veh shall yield and remain clear of the veh tfc pat and are rstd to a max hgt of 14’. For all arr, the B747-8 airline will tow the actf into Gates 4 or 18 from Tfw K and airline to provide wing-walkers as the actf is being towed into Gates 4 or 18. ADG-VI airplanes may depart on Rwy 06L and Rwy 24R with actf on parallel Twy K as long as no ADG-VI actf occupies the parallel twy byd 1500’ of the point of tkof roll. TODA: B747-8 deps from Rwy 24R and Tfw J int the avbl tkof dist will provide 11015’. For parking information all actf ctc ramp control. All actf dep terminal parking ctc ramp control for engine start and pushback. Tnt acft prvd 24 hrs advn info to Exec Mgr Guam Int’l Arpt Authority, 1–671–642–4455 Mon–Fri 2200–0700Z or Fax 1–671–646–8587. Customs available 24 hours daily. Landing fee. Consult special notice section of International NOTAMS.

AIRPORT MANAGER: (671) 646–0300

WEATHER DATA SOURCES: ASOS (671) 472–7399

COMMUNICATIONS: ATIS 119.0

guam cerap app/dep con 119.8

AGANA TOWER 118.1 GND CON 121.9 CLNC OEL 121.9 RAMP CON 121.6

AIRSPACE: CLASS D svc

RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

Nimitz (h) VORTACW 115.8 UNZ Chan 105 N13º27.27’ E144º44.00’ 063º 4.1 NM to ftd. 675/2E.

VORTAC unusable: 110º–130º byd 35 NM b/o 3,000’.

200º–238º byd 14 NM b/o 7,000’.

Mt Macaina NDB (HW) 3RD 385 AJA N13º27.21’ E144º44.22’ 061º 3.9 NM to ftd. 659/2E.

ILS/DME 110.9 l–GUM Chan 40 Rwy 06L.

COMM/NAV/WEATHER REMARKS: For radar advisory beyond 25 NM ctc Guam Center on 118.7. SSB receiving capability available on all HF freq. Aeronautical Radio, Inc. (ARINC) see Associated Data.

GUAM ARTCC

(ZUA) (PGZU)

118.7 119.8 120.5 121.5 remoted at Mount Santa Rosa. 118.4 remoted at Saipan.

MT MACAINA

N13º27.21’ E144º44.22’ NOTAM FILE PGUM.

NDB (HW) 385 AJA 061º 3.9 NM to Guam Intl. 659/2E.

Nimitz N13º27.27’ E144º44.00’ NOTAM FILE PGUM.

(h) VORTACW 115.8 UNZ Chan 105 063º 4.1 NM to Guam Intl. 675/2E.

VORTAC unusable: 110º–130º byd 35 NM b/o 3,000’.

200º–238º byd 14 NM b/o 7,000’.
HAWAII

BRADSHAW ARMY AIRFIELD
(BSF)/(PHSF) 1 W UTC–10 N19°45.60’ W155°33.23’

6190 TPA—See Remarks NOTAM FILE HNL

RWY 09–27: H3695X90 (ASPH) PCN 27 F/B/W/T MIRL

RWY 09: REIL. PAPI(P4L)—GA 3.0º TCH 30’. Rgt ttc. 2.9% up E.

SERVICE: LGT ACTIVATE MIRL Rwy 09–27, PAPI Rwy 09—121.7. FUEL

JAA/F24—24 hr PPR, fuel only tran acft, MIL EXER acft unit shall

provide fuel. J8 (MIL) 24 hr PPR 1730–0000Z Mon–Fri except

holidays, C808–969–2461. TRAN ALERT No aerospace gnd eqpt, tran

alert or maint svc. Ltd acft parking.

MILITARY REMARKS: Attended Mon–Fri 1715–0100Z except holidays, phone

Honolulu C808–433–1810 extn 461. Terminal, planes and marked

twr on arpt. Arpt is VFR for mil training. RSTD PPR for full stop ldg,

parking and for non–tenant acft. 72 hrs PPR for hazardous cargo ops,

fixed wing ops, and code movement, 24 hr PPR for all tran acft;

overflight of ammo supply point located 3300’ South of airfield is

prohibited. Hazardous cargo on/off load approach end Rwy 09 only.

Hazardous cargo advise twr IAW AR 95–27/AFR 55–14/OPNAVINST.

Flight within 4900’ or direct overflight blo 9000’ over Mauna Kea

State Park located 8200’ ESE of airfield is prohibited. Flt within 3/4

NM or overflight below 7,000’ of Waikii Ranch 7.9 NM NW prohibited.

No acft with skids on Fixed Wing ramp. When twr closed, acft remain N of Saddle Road and establish two–way

communication with Range Control prior to entry R–3103. Fixed wing acft are not auth tkof Rwy 09 and Rwy 27. Fixed

wing tkof and ldg not avbl when twr clsd. Fixed wing apch/land Rwy 09 only. Overflight or landing at Kawaihae Docks is

prohibited for military acft.

CAUTION Located in R–3103. 500´ asph overrun each end of Rwy 09–27. 7´ lip at W end of

overrun. 75´ of lava rock each side of rwy for dust control. Extensive dust hazard to fixed wing acft on E and W copter

park ramps. High FOD potential in all areas of airfield.

TFC PAT TPA—Tfc pattern R/W N of rwy, 6900´. Fixed wing 7700´ or as directed by ATC.

COMMUNICATIONS: CTA 126.3 ATIS 124.7

KAMUELA RCO 122.1R 113.3 (HONOLULU RADIO)

HCF CENTER APP/DEP CON 118.45 (1715–0100Z Except Holidays) 278.3

TOWER 126.3 (1715–0100Z Mon–Fri)

HICKAM METRO 346.6 Remote brief avbl. RANGE 125.2 38.3 (Opr 24 hrs)

PMSV METRO 122.75

CLEARANCE DELIVERY PHONE: For Cd when ATCT clsd, ctc Honolulu Control Facility at 808-840-6262.

AIRSPACE: CLASS D svc 1715–0100Z‡ Mon–Fri exc hol; other times CLASS G.

RADIO AIDS TO NAVIGATION:

KAMUELA (H) VOR/DME 113.3 MUE Chan 80 N19°59.88’ W155°40.19’ 144º 15.7 NM to fld. 2670/11E.

VOR portion unusable:

001º–030º byd 10 NM blo 6,000’

070º–084º byd 25 NM blo 7,000’

070º–084º byd 35 NM blo 13,000’

085º–210º byd 15 NM blo 15,500’

290º–360º byd 10 NM blo 7,500’

290º–360º byd 20 NM blo 16,000’

DME unusable:

070º–084º byd 25 NM blo 7,000’

070º–084º byd 35 NM blo 13,000’

085º–210º byd 15 NM blo 15,500’

290º–030º byd 10 NM

HILO (H) VORTAC 116.9 ITO Chan 116 N19°43.28’ W155°00.66’ 263º 30.8 NM to fld. 23/11E. NOTAM FILE ITO.

BRADSHAW NDB (HW) 339 BSF N19°45.80’ W155°35.66’ 085º 2.3 NM to fld. 5785/10E. NOTAM FILE HNL.

COMM/NAV/WEATHER REMARKS: PMSV unreadable blo 6190’ and vicinity mountains. Svc is avbl only when affl is opr.

HAMAKU N19°54.62’ W155°11.36’

RCO 122.2 (HONOLULU RADIO)
HILO INTL (ITO)(PHTO) 2. E UTC–10 N19°43.22’ W155°02.91’ HAWAIIAN ISLANDS

38 B LRA ARFF Index—See Remarks NOTAM FILE ITO AIRPORT/FACILITY DIRECTORY

RWY 08–26: H9800X150 (ASPH–GRVD) S–75, D–250, 2D–350, 2D/2D–850 PCN 69 F/B/W/T HIRL

RWY 08: ODALS. PAPI(P4R)—GA 3.0º TCH 71’. Tree.

RWY 26: MALS.R. PAPI(P4L)—GA 2.6º TCH 70’. Tree.

RWY 03–21: H5600X150 (ASPH–GRVD) S–75, D–80, 2D–140, 2D/2D–410 PCN 69 F/B/W/T HIRL

RWY 03: REIL. VASI(V4L)—GA 3.25º TCH 48’. Thld dsplcd 349’. Fence.

RWY 21: Pole.

RUNWAY DECLARED DISTANCE INFORMATION

RWY 03:
- TORA–5600
- TODA–5600
- ASDA–5600
- LDA–5251

RWY 08:
- TORA–9800
- TODA–9800
- ASDA–9800
- LDA–9800

RWY 21:
- TORA–5251
- TODA–5251
- ASDA–5251
- LDA–5510

SERVICE: S1 FUEL 100LL, JET A LGT

**ACTIVATE MIRL Rwy 3–21, HIRL Rwy 08–26, MALSR Rwy 26 and ODALS Rwy 08—118.1. Rwy 08 PAPI unusable byd 3 NM.

NOISE: Avoid overflight of noise sensitive residential areas north, west and southwest of arpt.

AIRPORT REMARKS:
- Attended 1700–0630Z. Rwy 03–21 closed to turbine acft 0400–1600. Be alert—occasional bird flocks on arpt and in flight across Rwy 08–26 and Rwy 03–21. Twy E btn Twy A and Rwy 08–26 ponding drg hvy rains. For fuel advance notice required, for 100LL call (808) 960–5146 or ctc freq 128.95, for JET A call 808–934–7757 or ctc freq 130.8. ARFF avbl 24 hrs, ctc 118.1 or (808) 934–5830/5831. Class I, ARFF Index C. ARFF avbl 24 hrs, contact 118.1 or 961–9317. The 1325’ paved area at approach end Rwy 08 marked by chevrons not usable for landing, takeoff, overrun or stopway and cannot be used in computing takeoff data for Rwy 08–26. Obstruction lighted 181’ smoke stack located 1/2 mile south of field. Rwys 08, 21 and 26 wind cones are lctd in the ROFA. Tower controls entry/exit traffic on taxiways F and E to east terminal ramp. Division 1.1, 1.2, 1.3 explosives prohibited. PPR from arpt manager for transportation of Division 1.4 explosives and hazardous material in or out of arpt. Rwy 03–21 no jet operations between 0400–1600Z. PPR from arpt manager for transient parking. Customs available. 100 grade fuel available Mon–Sat 1800–0300Z call (808) 961–6601 or 925–7395/889–6460 (nights and Sundays). Jet fuel available Mon–Sat 1800–0300Z call (808) 935–6881/6122 or 961–6601. NOTE: See Area Notices—General Information On Flying To Hawaii.

AIRPORT MANAGER: (808) 961–9300.

WEATHER DATA SOURCES: ASOS (808) 961–2077.

COMMUNICATIONS:
- CTAF 118.1
- ATIS 126.4
- RCO 122.6 122.1R 116.9T (HONOLULU RADIO)
- HGRC 119.7 (1600–0800Z)
- ATC 121.9

CLEARANCE DELIVERY PHONE: For CD when ATCT is clsd ctc Honolulu Control Facility at 808-840-6262.

AIRSPACE: CLASS D svc 1600–0800Z other times CLASS E.

RADIO AIDS TO NAVIGATION:
- (H) VORTAC 116.9 ITO Chan 116 N19°43.28’ W155°00.66’ 257º 2.1 NM to fld. 23/11E.
- (H) VOR/DME 110.7 I–ITO Chan 44 Rwy 26. Class: IA. Unmonitored when ATCT clsd.

AIRPORT/FACILITY DIRECTORY

KAMUELA (MUE) N19°59.88’ W155°40.19’

NOTAM FILE MUE.

(H) VOR/DME 113.3 MUE Chan 80 at Waimea–Kohala Fld. 2670/11E.

VOR portion unusable:
- 001º–030º byd 10 NM blo 6,000’
- 070º–084º byd 25 NM blo 7,000’
- 070º–084º byd 35 NM blo 13,000’
- 085º–210º byd 15 NM blo 15,500’
- 290º–360º byd 10 NM blo 7,500’
- 290º–360º byd 20 NM blo 16,000’

DMF unusable:
- 070º–084º byd 25 NM blo 7,000’
- 070º–084º byd 35 NM blo 13,000’
- 085º–210º byd 15 NM blo 15,500’
- 290º–360º byd 10 NM blo 100’

RCO 122.1R 113.3T (HONOLULU RADIO).
KILAUEA N19°26.15’ W155°16.37’ HAWAIIAN ISLANDS
RCO 122.4 (HONOLULU RADIO) P–2H

KONA INTL AT KEAHOE (ELLISON ONIZUKA) (KOAPUKA) 6 NW UTC–10 N19°44.33’ HAWAIIAN ISLANDS
W156°02’74’

47. B TPA—See Remarks LRA Class I, ARFF Index D NOTAM FILE KOA
RWY 17–35: H1100X150 (ASPH–GRVD) S–75, D–200, 2D–400, 2D/D1–450, 2D/2D2–850 PCN 69
F/A/W/T HIRL
RWY 17: MALSRR. PAPI(P4L)—GA 3.0º TCH 77’. Terrain. Rgt tfc.
RWY 35: PAPI(P4L)—GA 3.0º TCH 71’.

RUNWAY DECLARED DISTANCE INFORMATION
RWY 17: TORA–11000 TODA–11000 ASDA–11000 LDA–11000
RWY 35: TORA–11000 TODA–11000 ASDA–11000 LDA–11000

SERVICE: SB FUEL 100, JET A LGT

AIRPORT REMARKS: Attended 1600–0800Z. Migratory bird activity within a 5 NM radius of arpt. All wide–body aircraft contact tower prior to engine start. Kona Tower not responsible for movement on ramp within demarcation line. Request four engine acft taxi with outboard engines at idle due to narrow twy. Minor powerplant repairs available. Traffic pattern altitudes small aircraft 800(753) large aircraft 1500(1453). Rwys 17–35 double dual tandem wheel for DC10–10 450,000 lbs GWT, B747–SP 700,000 lbs GWT, B747–100 850,000 lbs GWT. PPR from arpt manager for transient parking call 808–327–9520. Division 1.1, 1.2, 1.3 explosives prohibited. PPR from arpt manager for transportation of Division 1.4 explosives and hazardous material in and out of arpt. Arpt ARFF mtnt CTAF 120.3 when tower clsd. Push back/pull out required from terminal parking positions for all acft, no power out. Helicopter operations on and in/of Twy Alpha. All helicopters confine operations to paved areas. Jet A and 100 octane fuel available daily 1800–0300Z, other times with prior arrangements, call (808) 329–4682. U.S. Customs lctd on south ramp. Jet acft on cargo and south ramp ctc twr prior to engine start.

AIRPORT MANAGER: (808) 327–9520

WEATHER DATA SOURCES: ASOS (808) 329–0412 LAWRS.
COMMUNICATIONS: CTAF 120.3 ATIS 127.4
RCO 122.45 (HONOLULU RADIO)

@ HCF CENTER APP/DEP CON 118.45 278.3
TOWER 120.3 (1600–0800Z) GND CON 121.9 CLNC DEL 118.6

CLEARANCE DELIVERY PHONE: For CD when ATCT is clsd ctc Honolulu Control Facility at 808-840-6262.
AIRSPACE: CLASS D svc 1600–0800Z other times CLASS E.

RADIO AIDS TO NAVIGATION: NOTAM FILE KOA.
(H) VORTAC 112.1 KOA Chan 58 N19°43.03’ W156°02.70’ 347º 1.3 NM to fld. 36/11E.
VOR unusable:
040º–110º
TACAN unusable:
065º–110º
215º–280º byd 13 NM blo 2,000´
215º–280º byd 18 NM
DME unusable:
065º–110º
215º–280º byd 13 NM blo 2,000´
215º–280º byd 18 NM
ILS/DME 109.7 I–KOA Chan 34 Rwys 17. ILS unmonitored when tower closed. LOC backcourse unusable 22º left and 25º right of centerline.

PAHOA N19°32.47’ W154°58.33’ NOTAM FILE ITO.
NDB (HW) 332 POA 327º 11.6 NM to Hilo Intl. 495/11E. Unmonitored when twr clsd.
UPOLU (UPP)(PHUP) 3 NW UTC–10 N20°15.91’ W155°51.60’
96 B TPA—See Remarks NOTAM FILE UPP
RWY 07–25: H3800X75 (ASPH) S–30, 2S–156 MIRL
 0.3% up W
RWY 07: PAPI(P2L)—GA 3.0º TCH 29’. Hill. Rgt tfc.
SERVICE: LGT ACTIVATE MIRL Rwy 07–25 and PAPI Rwy 07 and Rwy 25—CTAF.
AIRPORT REMARKS: Unattended. No facilities. PPR for transient parking. PPR from arpt manager phone (808) 327–9520 for transportation of Division 1.1, 1.2, 1.3 explosives in or out of arpt. Occasional flocks of birds on and inv of arpt. Skydiving activity on and inv of arpt. All helicopters confine ops to paved areas only. TPA—small acft 800(704), large acft 1500(1404). NOTE: See Area Notices—TRAFFIC ADVISORIES AT NON–TOWER AIRPORTS.
AIRPORT MANAGER: (808) 327–9520
COMMUNICATIONS: CTAF 122.9
UPOLU POINT RCO 122.1R 112.3T (HONOLULU RADIO)
CLEARANCE DELIVERY PHONE: For CD ctc Honolulu Control Facility at 808-840-6262.
RADIO AIDS TO NAVIGATION: NOTAM FILE UPP.
UPOLU POINT (H) VORTAC 112.3 UPP Chan 70 N20°12.03’ W155°50.60’ 335º 4.0 NM to fld. 1760/11E.
 VOR unusable:
 022º–040º blo 5,000’
 123º–130º
 203º–292º byd 30 NM blo 8,000’
 VORTAC unusable:
 145º–160º byd 27 NM blo 19,000’
 168º–180º byd 25 NM blo 10,000’

UPOLU POINT N20°12.03’ W155°50.60’ NOTAM FILE UPP.
(H) VORTAC 112.3 UPP Chan 70 335º 4.0 NM to fld. 1760/11E.
 VOR unusable:
 022º–040º blo 5,000’
 123º–130º
 203º–292º byd 30 NM blo 8,000’
 VORTAC unusable:
 145º–160º byd 27 NM blo 19,000’
 168º–180º byd 25 NM blo 10,000’
RCO 122.1R 113.3T (HONOLULU RADIO)
WAIMEA–KOHALA (MUE)(PHMU) 1 SW UTC–10 N20°00.08’ W155°40.09’
2671 B TPA—See Remarks NOTAM FILE MUE
RWY 04: REIL. VASI(V4R)—GA 2.5º TCH 43’. Rgt tfc.
RWY 22: REIL. VASI(V4L)—GA 3.0º TCH 35’. Fence.
SERVICE: LGT ACTIVATE MIRL Rwy 04–22—CTAF. VASI Rwy 04 unusable byd 8º left of centerline. VASI Rwy 22 unusable byd 5º left and right of centerline.
AIRPORT REMARKS: Attended 1600–0530Z. Telephone line 1000’ from approach end Rwy 04. Rwy 04 30’ trees 275’ rgt of centerline 3000’ from approach end rwy. PPR for transient parking. PPR from arpt manager phone (808) 327–9520 for transportation of Division 1.1, 1.2, 1.3 explosives in or out of arpt. Occasional flocks of pigeons on arpt and near Rwy 04–22. All helicopters confine ops to paved areas only. TPA—Traffic pattern altitudes small acft 3500(829), large acft 4200(1529). NOTE: See Area Notices—TRAFFIC ADVISORIES AT NON–TOWER AIRPORTS.
AIRPORT MANAGER: (808) 327–9520
WEATHER DATA SOURCES: AWOS–3PT 120.0 (808) 887–8127.
COMMUNICATIONS: CTAF 122.9
NAV BARKING SANDS PMRF TOWER 126.2 360.2 Mon–Fri 1700–0400Z except holidays. Other times by OPR NEC only.
NAVY BARKING SANDS TOWER 340.2
CLEARANCE DELIVERY PHONE: For CD ctc Honolulu Control Facility at 808-840-6262.
AIRSPACE: CLASS E
RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.
TACAN unusable:
010º–040º byd 15 NM bld 17,000’
040º–075º byd 15 NM
075º–120º byd 20 NM bld 17,000’
LIHUE (LIH/PHLI) 2 E UTC–10 N21º58.56’ W159º20.34’.
152 B TPA—See Remarks LRA Class I, ARFF Index C NOTAM FILE LIH
RWY 03–21: H6500X150 (ASPH—GRVD) S–75, D–200, 2D–350, 2D/2D2–730
PCN 75 F/A/W/T MIRL
RWY 03: REIL. PAPI(P4L)—GA 3.0’ TCH 46’. Rgt tlc. 1.1% up SW.
RWY 17–35: H6500X150 (ASPH—GRVD) S–75, D–175, 2D–250, 2D/2D2–630 PCN 75 F/A/W/T HIRL
RWY 17: REIL. PAPI(P4L)—GA 3.0’ TCH 55’.
RWY 35: MALSR. PAPI(P4L)—GA 3.0’ TCH 55’. Rgt tlc.
RUNWAY DECLARED DISTANCE INFORMATION
RWY 03: TORA–6500 TADA–6500 ASDA–6500 LDA–6500
RWY 17: TORA–6500 TADA–6500 ASDA–6500 LDA–6500
RWY 35: TORA–6500 TADA–6500 ASDA–6500 LDA–6500
SERVICE: S2 FUEL 100, JET A LGT ACTVT MALSR Rwy 35; REIL Rwy 03, 17 and 21; PAPI Rwy 03 and Rwy 21; MIRL Rwy 03–21; HIRL Rwy 17–35; two lghts—CTAF. PAPI Rwy 03 unusable byd 1.5 NM and 7º left of centerline and offset 9.5º E of centerline due to rapidly rising terrain. PAPI Rwy 17 unusable byd 5º rgt of centerline.
AIRPORT REMARKS: Attended 1600–0800Z. Extensive large and small bird activity in and of the nene goose.
Stadium flood lights 125’ AGL/282’ MSL 2400’ SW from Rwy 03 threshold. PPR for parking all transient act, call arpt ops control (808) 651–6255; fax (808) 241–3939 bnn 1700Z and 0230Z; other times, call (808) 274–3814.
Military/civilian act carrying munitions/HAZMAT must coordinate its movement areas ctc twr. Intersection departures from Twy D on Rwy 17–35 not authorized. ARFF available 24 hrs. 100 octane fuel available 1900–0300Z. For JET A fuel call 1 (800) 776–2138 or 1 (800) 821–3122. Military acft make fuel arrangements before arrival. PPR for transportation of Division 1.1, 1.2, 1.3 explosives and hazardous material in and out of arpt. Call 1 (808) 241–3912. Rwy 17–35 weight limit DC 10–10 340,000 lbs, DC 10–30 430,000 lbs. TPA—single engine 1000(847), Multi engine 1500(1347).
AIRPORT MANAGER: (808) 274–3800
WEATHER DATA SOURCES: ASOS (808) 246–3707
COMMUNICATIONS: CTAF 118.9 ATIS 127.2
RCO 122.4 122.1R 113.5T (HONOLULU RADIO)
TOWER 118.9 (128.4 Helicopters) (1600–0800Z) (when twr clsd ctc HCF)
HCF CENTER APP/DEP CON - CLNC DEL 126.5 269.4 (If unavailable ctc 134.0)
GND CON 121.9
CLEARANCE DELIVERY PHONE: For CD when ATCT is clsd ctc Honolulu Control Facility at 808-840-6262.
AIRSPACE: CLASS D svc 1600–0800Z other times CLASS E.
RADAR AIDS TO NAVIGATION: NOTAM FILE LIH.
(H) VORTAC 113.5 LIH Chan 82 N21º57.92’ W159º20.29’ at fld. 101/11E.
TACAN AZIMUTH and DME unusable: 180º–240º byd 16 NM
241º–330º byd 18 NM
331º–355º byd 30 NM blo 7,500’
VOR unusable: 180º–240º byd 33 NM blo 11,500’
241º–330º byd 18 NM
331º–355º byd 30 NM blo 7,500’
ILS/DME 110.9 I–LIH Chan 46 Rwy 35. Class IE. LOC unusable byd 20º left of course. ILS/DME unmonitored when ATCT closed. DME unusable byd 20º left of course.
ASR
COMM/NAV/WEATHER REMARKS: When twr closed, A/C on ground ctc Honolulu Center (HCF) on 126.5/ HCF Apch 134.0.
HELIPAD H1: H40X40 (CONC)
HELIPAD H2: H40X40 (CONC)
HELIPAD H3: H40X40 (CONC)
HELIPORT REMARKS: Helicopter pads 1 through 20 located west of control twr.
NORTH KAUAÏ N22º12.55’ W159º26.63’
RCO 122.3 (HONOLULU RADIO)
PAC, 8 SEP 2022 to 3 NOV 2022
PORT ALLEN (PAK/PHPA) 1 SW UTC–10 N21°53.82’ W159°36.19’ HAWAIIAN–MARIANA
24 TPA—824(800) LRA NOTAM FILE LIH
RWY 09–27: H2450X60 (ASPH) S–18
RWY 09: Thld displaced 189’. Rgt tfc.
RUNWAY DECLARED DISTANCE INFORMATION
RWY 09: TORA–2361 TODA–2361 ASDA–2361 LDA–2361
NOISE: Noise abatement: Avoid overflight of the salt pond, state recreational beach park, residential and commercial areas N of airfield.
AIRPORT MANAGER: (808) 274–3800
COMMUNICATIONS: CTAF 122.9
LIHUE RCO 122.4 122.1R 113.5T (HONOLULU RADIO)
CLEARANCE DELIVERY PHONE: For CD ctc Honolulu Control Facility at 808-840-6262.
RADIO AIDS TO NAVIGATION: NOTAM FILE LIH.
SOUTH KAUAI (H) VORTAC 115.4 SOK Chan 101 N21°54.02’ W159°31.73’ 256º 4.2 NM to fld. 602/11E.
COMM/NAV/WEATHER REMARKS: For aviation info 0800–1600Z contact Honolulu FSS on 122.6.

PRINCEVILLE (HI01) 3 E UTC–10 N22°12.55’ W159°26.73’ 344 HAWAIIAN ISLANDS
RWY 05–23: H3560X60 (ASPH) S–30 LIRL(NSTD)
RWY 05: Trees.
RWY 23: Pole.
SERVICE: LGT NSTD LIRL OTS indef.
AIRPORT REMARKS: Unattended. Daytime VFR operations only. Tree line with trees up to 60’ approximately 200’ N of rwy centerline near midfield. Tree line with 20’ trees 125’ N and S of rwy centerline. Ctc Princeville (808) 826–3040, 1900–0300Z for ldg authorization and ops requirements. No helicopter operations permitted except for existing operations by resident tour operator. Rwy 05 rising terrain at approximately 5% slope. Acft parking not to exceed 45 minutes due to limited ramp space. Landing fee.
AIRPORT MANAGER: (808) 826–3040
COMMUNICATIONS: NORTH KAUAI RCO 122.3 (HONOLULU RADIO)
CLEARANCE DELIVERY PHONE: For CD ctc Honolulu Control Facility at 808-840-6262.
RADIO AIDS TO NAVIGATION: NOTAM FILE LIH.
LIHUE (H) VORTAC 113.5 LIH Chan 82 N21°57.92 W159°20.29 327º 15.8 NM to fld. 101/11E.
TACAN AZIMUTH and DME unusable: 180º–240º byd 16 NM
241º–330º byd 18 NM
331º–355º byd 30 NM blo 7,500’
VOR unusable: 180º–240º byd 33 NM blo 11,500’
241º–330º byd 18 NM
331º–355º byd 30 NM blo 7,500’

SOUTH KAUAI N21°54.02’ W159°31.73’ NOTAM FILE LIH. HAWAIIAN–MARIANA
(H) VORTAC 115.4 SOK Chan 101 256º 4.2 NM to Port Allen. 602/11E.
VORTAC unusable: 060º–070º byd 30 NM blo 5,000’
305º–010º byd 15 NM blo 8,500’
RCO 122.1R 115.4T (HONOLULU RADIO)

PAC, 8 SEP 2022 to 3 NOV 2022
LANAI (LNY/PHNY) 3 SW UTC–10 N20°47.14 ′ W156°57.09 ′

1308 B TPA—See Remarks Class I, ARFF Index A NOTAM FILE LNY

RWY 03–21: H5001X150 (ASPH–GRVD) S–75, D–110, 2D–170, C5–517 PCN 12 F/A/W/T MIRL

RWY 03: PAPI(P4R)—GA 3.0 ′ TCH 49 ′.

RWY 21: PAPI(P4L)—GA 3.76 ′ TCH 45 ′. Antenna.

RUNWAY DECLARED DISTANCE INFORMATION

RWY 03: TORA–5000 TODA–5000 ASDA–5000 LDA–5000

RWY 21: TORA–5000 TODA–5000 ASDA–5000 LDA–5000

SERVICE: FUEL ETA LGT ACTIVATE PAPI Rwy 03 and Rwy 21, MIRL Rwy 03–21—CTAF. Rwy 21 PAPI unusable byd 2 NM due to terrain.

AIRPORT REMARKS: Attended 1600–0400Z. Jet A fuel 5000 gal. POC (808) 286–7075. 24 hrs PPR for Division 1.1, 1.2, 1.3 explosives and 4 hrs PPR for hazardous material in/out of arpt ctc (808) 565–7941/7943. Arpt CLOSED to air carrier ops with more than 10 passenger seats 0530–1600Z except PPR, call (808) 565–7942. TPA—small acft 2100 (792) large acft 2800 (1492). Possible severe updrafts/downdrafts from 2 mile final apch to Rwy 3 thld. Due to ramp limitations all acft parking limited to one hour except via PPR call (808) 565–7942, FAX (808) 565–7940 or (808) 872–3880. Jet parking SW side of ramp is asph. Fixed wing transient parking SW side of ramp is conc. NOTE: See Area Notices—TRAFFIC ADVISORIES AT NON–TOWER ARPTS.

AIRPORT MANAGER: (808) 872–3830

WEATHER DATA SOURCES: AWOS–3PT 118.375 (808) 565–6586.

COMMUNICATIONS: CTAF 122.9

LANAI RCO 122.5 (HONOLULU RADIO) ®

HCF CENTER APP/DEP CON 119.3

CLEARANCE DELIVERY PHONE: For CD una to ctc on FSS freq, ctc Honolulu Control Facility at 808-840-6262.

RADIO AIDS TO NAVIGATION:

(H) VORTAC 117.7 LNY Chan 124 N20º45.87 ′ W156º58.13 ′ 027° 1.6 NM to fld. 1250/11E.

TACAN unusable: 005°–063° byd 20 NM blo 15,000 ′

VOR unusable: 020°–060° byd 27 NM blo 5,000 ′

NDB (HHW) 353 LLD N20º46.35 ′ W156º58.41 ′ 047° 1.5 NM to fld. 990/11E.

ILS/DME 111.1 I–LNY Chan 48 Rwy 03. Class IT. ILS unmonitored. Glideslope unusable for coupled apchs blo 1,505 ′ MSL.

HALEAKALA N20°42.32 ′ W156°15.90 ′

RCO 122.2 (HONOLULU RADIO) ®

HAWAIIAN ISLANDS

HANA (HNM/PHHN) 3 NW UTC–10 N20°47.74 ′ W156°00.87 ′

78 B TPA—See Remarks NOTAM FILE HNM

RWY 08–26: H3606X100 (ASPH) S–34, D–48, 2D–80 MIRL

0.7% up W

RWY 08: PAPI(P2L)—GA 3.6 ′ TCH 26 ′.

RWY 26: Rgt tfc.

SERVICE: LGT ACTIVATE MIRL (only high intensity avbl) Rwy 8–26—CTAF. Rwy 08 PAPI daylight ops only. Rwy 08 PAPI OTS indef.

AIRPORT REMARKS: Attended 1745–0230Z. Wild boars on and invof arpt. Parachute ldg area on east infield btn Twy B and C. Helicopter pilot training maneuvers will be conducted at the approach end of Rwy 26 only. Ultralights on and invof arpt. 24 hrs PPR for Division 1.1, 1.2, 1.3 explosives and 4 hrs PPR for other hazardous cargo in/out of arpt ctc (808) 248–4861 or (808) 872–3880. Rwy 08–26 35 ′ trees along both sides of rwy 200 ′ from centerline. Helicopter parking on grass infield areas between ramp and runway. TPA—Traffic pattern altitudes small acft 800(722) large acft 1500(1422). NOTE; See Area Notices—TRAFFIC ADVISORIES AT NON–TOWER AIRPORTS.

AIRPORT MANAGER: (808) 872–3808

WEATHER DATA SOURCES: AWOS–3PT 118.325 (808) 248–4864.

COMMUNICATIONS: CTAF 122.9

HANA RCO 122.3 (HONOLULU RADIO) ®

HCF CENTER APP/DEP CON 118.45 278.3

CLNC DEL 122.3

CLEARANCE DELIVERY PHONE: For CD ctc Honolulu Control Facility at 808-840-6262.

RADIO AIDS TO NAVIGATION:

MAUI (H) VORTAC 115.1 OGG Chan 98 N20°54.39 ′ W156°25.26 ′ 095° 23.8 NM to fld. 24/11E.

PAC, 8 SEP 2022 to 3 NOV 2022
MAUI RCO

COMMUNICATIONS: HONOLULU CONTROL FACILITY APP/DEP CON 120.2 (North) 119.5 (South) (1600–0900Z, effective starting at 0200 local time the second Sunday in March through 0200 local time the second Sunday in March), OT ctc

HCF CENTER APP/DEP CON 119.3 307.1

MAUI TOWER 118.7 GND CON 121.9 MAUI CLNC DEL 120.6 (1600–0900Z, effective starting at 0200 local time the second Sunday in March through 0200 local time the first Sunday in November. 1600Z-1600Z, effective starting at 0200 local time the first Sunday in November through 0200 local time the second Sunday in March) ctc

CLEARANCE DELIVERY PHONE: For CD when ATCT is cslc ctc Honolulu Control Facility at 808-840-6262.

AIRSPACE: CLASS C svc (1600–0900Z, effective starting at 0200 local time the second Sunday in March through 0200 local time the first Sunday in November. 1600Z-1600Z, effective starting at 0200 local time the first Sunday in November through 0200 local time the second Sunday in March) ctc APP CON other times CLASS E..
KAPALUA (JHM)(PHJH) 5 NW UTC–10 N20°57.78’ W156°40.38’ NOTAM FILE JHM

256 Class I, ARFF Index A

RWY 02–20: H3000X100 (ASPH) D–44 PCN 2 F/B/W/T

RWY 02: PAPI(P2L)—GA 5.5º TCH 35’. RWY 20: PAPI(P2R)—GA 5.5º TCH 35 ´. Tree. Rgt tfc.

RUNWAY DECLARED DISTANCE INFORMATION

RWY 02: TORA–3000 TODA–3000 ASDA–3000 LDA–3000

RWY 20: TORA–3000 TODA–3000 ASDA–3000 LDA–3000

NOISE: Special noise level standards for acft operating at arpt. Restriction on number of daily flts depending on acft capacity and size.

AIRPORT REMARKS: Attended 1600–0400Z. Private use only. Arpt restricted to Part 121 and Part 135 FAR operators with PPR, ctc Kahului arpt ops (808) 872–3880 (24 hrs). ARFF hrs 1600–0400Z. No helicopter ops permitted. No jet powered acft allowed. No practice and training flights permitted. Rapidly rising terrain up to 300˚ MSL along the full length of Rwy 02–20 approximately 160˚ E of centerline.

AIRPORT MANAGER: (808) 872–3830

WEATHER DATA SOURCES: AWOS–3PT 118.525 (808) 665–6101.

COMMUNICATIONS: CTAF/UNICOM 122.7

MAUI (H) VORTAC 115.1 OGG Chan 98 N20°54.39’ W156°25.26’ 272º 14.6 NM to fld. 24/11E.

COMM/NAV/WEATHER REMARKS: UNICOM opn 1600–0400Z daily. Transient acft may call for tfc advys.

VALLEY ISLAND N20°52.85’ W156°26.56’ NOTAM FILE OGG

NDB (MIW) 327 VYI 022º 1.3 NM to Kahului. 62/11E.

NDB unusbl 075º–160º byd 5 NM; 225º–310º byd 5 NM.
MOLOKAI

KALAUPAPA (LUP)/(PHLU) 2 N UTC–10 N21°12.66´ W156°58.42´
24 B TPA—800(776) NOTAM FILE MKK
RWY 05–23: H2700X75 (ASPH) S–17 MIRL
RWY 05: PAPI(P2L)—GA 3.0º TCH 19´.
RWY 23: Rgt tcf.
SERVICE: LGT ACTVT MIRL RWY 05–23 high and medium INTST
only—CTAF. PAPI RWY 05 daytime VFR use only. Rwy 05 PAPI unusbl
byd 2.2 NM. Terrain penetrates PAPI safety slope at 2.7 NM.
AIRPORT REMARKS: Attended Mon–Fri 1700–0130Z. PPR from State
Department of Health, Communicable Disease Division to enter
settlement area phone Honolulu (808) 586–4580. 24 hrs PPR for
Division 1.1, 1.2, 1.3 explosives and 4 hrs PPR for other hazardous
material in/out of arpt ctc (808) 567–9660/9663. Deer and wild
animals on and inv of arpt at night. Oct–May large waves impacting
shoreline resulting in salt water sprays 40´ high. NOTE: See Area
Notices—TRAFFIC ADVISORIES AT NON–TOWER ARPTS.
AIRPORT MANAGER: (808) 872–3830
COMMUNICATIONS: CTAFF 122.9
 MOLOKAI RCO 122.1R 116.1T (HONOLULU RADIO)
 HCF CENTER APP/DEP CON 124.1
CLEARANCE DELIVERY PHONE: For CD ctc Honolulu Control Facility at
808-840-6262.
RADIO AIDS TO NAVIGATION: NOTAM FILE MKK.
 MOLOKAI (H) VORTAC 116.1 MKK Ch 108 N21°08.29´
 15°10.05 057º 11.7 NM to fld. 14211/11E,
 VORTAC unusable:
 275º–285º byd 25 NM blo 3,500´
MOLOKAI (MKK)/(PHMK) 6 NW UTC–10 N21°09.17´ W157°05.78´

454 B TPA—See Remarks Class I, ARFF Index A NOTAM FILE MKK

RWY 05–23: H4494X100 (ASPH–GRVD) S–30, D–48 PCN 28 F/A/W/T MIRL
0.4% up NE
RWY 05: REIL. PAPI(P4L)—QA 4.0º TCH 49´
RWY 17–35: H3118X100 (ASPH) S–13 PCN 04 F/B/W/T MIRL
0.6% up N
RWY 17: Thld dsplcd 426´. Fence.
RWY 35: Fence.

RUNWAY DECLARED DISTANCE INFORMATION

RWY 05: TORA–4494 TODA–4494 ASDA–4494 LDA–4494
RWY 17: TORA–3118 TODA–3118 ASDA–3118 LDA–2692
RWY 35: TORA–3118 TODA–3118 ASDA–3118 LDA–3118

SERVICE: LGT
When twr closed ACTIVATE MIRL Rwy 05–23 and Rwy 17–35, REIL Rwy 05—CTAF. Rwy 05 PAPI not authorized 1.8 NM byd landing thld due to rapidly rising terrain.

AIRPORT REMARKS: Attended 1500–0615Z. Be alert to egrets and pigeons on and in vicinity of arpt. TPA—small acft 1250(796) large acft 1950(1496). Arpt CLOSED to air carrier operations with more than 10 passenger seats 0530–1600Z except PPR call (808) 567–9663. 24 hrs PPR for Division 1.1, 1.2, 1.3 explosives and 4 hrs PPR for other hazardous material in/out of arpt ctc (808) 567–6140/6008. Large acft with wingspan greater than 78´ may not use Twy A or Rwy 05–23 for simultaneous ops. Mountain approximately 1280´ MSL located 2.8 NM from threshold Rwy 05 on extended centerline. Standing water/ponding on Rwy 17–35 near Twy Echo during inclement weather.

AIRPORT MANAGER: (808) 872–3808

WEATHER DATA SOURCES: ASOS (808) 567–6106

COMMUNICATIONS: CTAF 125.7 ATIS 128.2
(H) HCF CENTER APP/DEP CON 124.1
TOWER 125.7 (1600–0430Z) GND CON 121.9

CLEARANCE DELIVERY PHONE: For CD when ATCT is clsd ctc Honolulu Control Facility at 808-840-6262.

AIRSPACE: CLASS D svc 1600–0430Z other times CLASS E.

RADIO AIDS TO NAVIGATION:

(H) VORTAC 116.1 MKK Chan 108 N21°08.29´ W157°10.05´ 067º 4.1 NM to fld. 1421/11E.
VORTAC unusable:
275º–285º byd 25 NM blo 3,500´
AIRPORT/FACILITY DIRECTORY

OAHU

DILLINGHAM AIRFIELD (HDH) MIL/CIV A 2 W UTC–10 N21º34.77´ W158º11.84´ 14 TPA—800(786) NOTAM FILE HNL

RWY 08–26: H9007X75 (ASPH) S–40, D–152, 2D–180

RWY 08: Thld displd 1993´.

SERVICE: S4 FUEL. 100, JET A LGT Wind indcrs are not lgtd.

AIRPORT REMARKS: Attended 1700–0130Z. Located within Dillingham Military Reservation. CLOSED to Civil acft SS–SR. Open to civil use thru agreement between the US Army and the State of Hawaii, check NOTAM´s prior to use. No ATCT in opn. Parachute Jumping. Sky diving activity on and in vicinity of arpt. Ultralights on and invof arpt. Simultaneous glider/powered acft opns. Tree line with 90´ trees N and S of rwy approximately 425´ from centerline. A 5000´ x 75´ rwy has been painted in the center of the existing 9007´ x 75´ paved area for civil use starting approximately 2000´ from each rwy end. NOTE: See Area Notices TRAFFIC ADVISORIES AT NON TOWER AIRPORTS.

MILITARY REMARKS: Opr 1700–0130Z. Rwy 08–26 clsd for mil trng 0800–1700Z. RSTD PPR for civil acft 12500 and over, ctc arpt Airside OPS C808–836–6428, Mon–Fri 1745–0230Z. PPR for all mil acft into arpt ctc USA HAWAII RNG C808–655–1429/4892. A 5000´ x 75´ rwy for lgt pwr acft has been painted in the cntr of the 9007´ x 75´ paved area, do not land short of displ thld. No running ldg with skid type copter on rwy. Ldg on apv twy only. SS–SR. No banner towing. Ltd rescue and fire fighting avbl 1700–0130Z. CAUTION Extv mil copter and glider opr. Extv PJE wknd and hol. Aerobatics trng area off–shore north of the fld abv 1500´. Ultralight and skydiving haz. Large sea bird haz Nov–Apr. Mk depression in vcnty of auto fuel pump southwest apn. PJE act 3 NM NW. TFC PAT Eng pwr acft should keep base leg in close and cross arpt bdry fences at or abv 600´ to assure safe separation fr sailplanes/towplanes using the first 2000´ (short of the displ thld).

RWY Sailplanes using first 2000´ of full rwy for ldg.

AIRPORT MANAGER: 808-836-6533

COMMUNICATIONS: CTAF/UNICOM 123.0

RADIO: 122.6 (HONOLULU RADIO)

CLEARANCE DELIVERY PHONE: For CD ctc Honolulu Control Facility at 808-840-6262.

RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

HONOLULU (H) VORTAC 114.8 HNL Chan 95 N21º18.50´ W157º55.82´ 306º 22.0 NM to fld. 10/11E.

COMM/NAV/WEATHER REMARKS: All acft must contact Dillingham UNICOM prior to entering traffic pattern and maintain contact on 123.0 while operating in the Dillingham area. UNICOM oper 1900–0300Z.

EWABE N21º19.48´ W158º02.94´ NOTAM FILE HNL

HONOLULU CONTROL FACILITY (ZH/H/PHZH)

HALEAKALA RCAG 118.45 121.5

HAMAKUA RCAG 126.6 Primary for area 90 NM E of Denns, Ebber and Fites DME fixes.

KOKEE RCAG 119.9 Primary for area S of Honolulu and area W and NW of Lihue.

MT HALEAKALA RCAG 119.3 Primary for Lanai area.

WAIMANALO RCAG 118.45 119.3 124.1 127.6

PAC, 8 SEP 2022 to 3 NOV 2022
HONOLULU

DANIEL K INOUYE INTL (JOINT BASE PEARL HARBOR–HICKAM) (HNL)(PHNL) P (AF) 3 NW HAWAIIAN ISLANDS

UTC–10 N21°19.07’ W157°55.21’

12.6 B TPA—See Remarks LRA Class I, ARFF Index E NOTAM FILE HNL

RWY 08L–26R: H12312X150 (ASPH–GRVD) S–100, D–200, 2D–400, 2D/2D–780 PCN 79 R/B/W/T HIRL

RWY 08L: MALSR. PAPI(P4L)—GA 3.0° TCH 71’.

RWY 26R: REIL. PAPI(P4L)—GA 3.25° TCH 65’. Road.

RWY 08R–26L: H12000X200 (ASPH–GRVD) S–80, D–170, 2D–400, 2D/2D–780 PCN 98 F/B/X/T HIRL

RWY 08R: REIL. PAPI(P4L)—GA 3.0° TCH 75’.

RWY 26L: MALSR. PAPI(P4L)—GA 3.0° TCH 75’.

RWY 04R–22R: H9002X150 (ASPH–GRVD) S–100, D–200, 2D–400, 2D/2D–850 PCN 57 F/B/X/T HIRL

RWY 04R: MALSR. PAPI(P4L)—GA 3.0° TCH 71’. Tree.

RWY 22L: REIL. PAPI(P4L)—GA 3.44° TCH 80’. Stack.

RWY 04L–22L: H6955X150 (ASPH) S–100, D–200, 2D–400, 2D/2D–850 PCN 31 F/B/X/T HIRL

RWY 04L: REIL. PAPI(P4L)—GA 3.0° TCH 50’.

RWY 22R: REIL. Antenna.

LAND AND HOLD–SHORT OPERATIONS

LDG RWY HOLD–SHORT POINT AVBL LDG DIST

RWY 04L 08L–26R 3700

RWY 04R 08L–26R 6250

RWY 08L 04L–22R 9300

RUNWAY DECLARED DISTANCE INFORMATION

RWY 04L: TORA–6952 TODA–6952 ASDA–6952 LDA–6952

RWY 04R: TORA–9000 TODA–9000 ASDA–8950 LDA–8950

RWY 08L: TORA–12312 TODA–12312 ASDA–12312 LDA–12312

RWY 08R: TORA–12000 TODA–12000 ASDA–12000 LDA–12000

RWY 22L: TORA–9000 TODA–9000 ASDA–8937 LDA–8937

RWY 22R: TORA–6952 TODA–6952 ASDA–6952 LDA–6952

RWY 26L: TORA–12000 TODA–12000 ASDA–12000 LDA–12000

RWY 26R: TORA–12300 TODA–12300 ASDA–12300 LDA–12300

ARRESTING GEAR/SYSTEMS

RWY 04R: BAK–14 BAK–12B (1500’)

BAK–14 BAK 12B(B) (1500’) RWY 26L

SERVICE: 34 FUEL 100, JET A, A1+ OX 1, 2, 3, 4 LGT Rwy 22L PAPI unusable byd 2 NM. Rwy 26L PAPI aligned 05° left of rwy centerline, Rwy 26L PAPI unusable byd 05° right of rwy centerline. Rwy 26R PAPI unusable byd 1.5 NM from thld. MILITARY—FUEL A++ (Mil; avbl H24) A–GEAR Hook MB100(B) lcdr 200° from thld Rwy 26W. Rwy 04R–22R and Rwy 08R–26L sfc grvd within 10’ of A–G system. Potential for fighter acct tail hook skip exists. TRAN ALERT 15 WG can provide eqpt but crews must provide own pers when needed.

CONTINUED ON NEXT PAGE
AIRPORT REMARKS: Attended continuously. 100 octane fuel avbl thru FBO. Bird strike hazard all runways. ASDE–X in use. Opr transponders with altitude reporting mode and ADS–B (if equipped) enabled on all airport surfaces. Due to location of twr, controllers unable to determine whether acft are on correct final apch to Rwy 04L, Rwy 04R, Rwy 22L and Rwy 22R. Due to non-visibility twr una to dtrm if the flwg areas are clear of obstns and/or ctcs: ptns of Twy J b/tw Twy B and Rwy 08R; ptns of Inter–Island acft prkg ramp. Rwy 08L–26R 200' wide with lights outside, prmt striped 150’ wide. TPA—Tcf pattern altitude for small acft entering from northwest 800(787). Tcf pattern altitude for small acft entering from south 1000(987). Tcf pattern altitude for large acft entering from south 1500(1487). During periods of repeated precipitation anticipate wet rwy conditions, if current conditions rqr confirmation rtc Honolulu twr on initial ctc. Remain at least 1 mile offshore of Waikiki Diamond Head Koko Head and EWA Beach. Arrival Rwy 08L, fly ILS apch procedure or a close-in base leg remaining over center of Pearl Harbor Channel. Arrival Rwy 26L and Rwy 26R, remain at tcf pattern altitudes as long as possible before beginning descent for ldg. Twy G ADG V and below power in w/PPR. Tower approval required to use Taxiway Kilo from Runway 4R. Apron Taxiature 6 b/tw Twy C and south ramp clsd except GA/ixed wing loading/unloading only. Apron Taxiature 2 east end 360’ clsd. Rwy 04R and Rwy 08R wind cones in nonstandard lctn. All jet acft ctc ramp control prior to engine start at gate or hard stand. PPR from arpt manager for transportation of Class A and B explosives in and out of HNL. LRA: 2 hrs advance notice rqr outside regular business hrs. Ldg fee and storage charges collectable on arrival. NOTE: See Area Notices. NOTE: See General Notices—GENERAL INFORMATION ON FLYING TO HAWAII. NOTE: See Special Notices—Tower Data Link System. NOTE: See Special Notices—HNL Runway Incursion Risk. NOTE: See Special Notices—Arrival Alert.

MILITARY REMARKS: See FLIP AP/3 Supplementary arpt information, route and area rstd, and Oakland FIR flt hzl. All acft inbd to Hickam should address flt plan to PHIKXXX. All military acft with VIP code 7 or abv ctc 15WG command post or relay thru HF/SSB airway 1 hour out to confirm blocktime. All units planning to stage ops from JBPH–H must contact 15 WG/XP (315) 449-1591 at least 60 days prior to arrival. ANG HI ANG afld ops opr 1500–0300Z Mon-Fri and UTA wknds; clsd Sat, Sun and hol. RSTD JBPH–H is PPR to all non–TFW mcn, AMC brng mcn and KC–135 U & B EN mcn cls 735th MOC at DSN (315) 499–6970 for PPR. All amc PPR will be coord Mon–Fri 1700–0400Z only. All non–AMC acft such as foreign, sister svc, trsn acct and or trn mcn must ctc 15 OSS/OSA (AMOPS) at DSN (315) 449–0046/0048 for PPR coord. All PPR will be apvd no earlier than 72 hr but no later than 24 hr prior. All tran acct not on an AMCT/WCF mcn and home stn acct terminating at JBPH–H will provide a 3 hr out call (comm 808–448–6900) as well as a 20–30 min out call on 292.5 to the 15 WG/CP (KOA CONTROL). Upon arr, crews will prvd crew order/EAL to 647 SFS Patrol and procct drcly to command post (bldg 2050) and complt an oubd setup sheet to facilitate dep rnmnts. Mil acct opr during Bird Watch Condition MODERATE (initial tkof or full stop ldg only, no multiple IFR/VFR approaches) and SEVERE (tkof and ldg prohibited w/o 15 OG/CC approval or 154 OG/CC approval for HIANG acft) ctc HIK ramp, PTD, 15 WG command post, 735 AMC command post, 154 WG command post for current conditions. Twr apvl rqr to use Twy Kilo from Rwy O4R. Twy R Hold–Short apch zone Rwy O4L/R at hold line. Twy P clsd to acft over 12500 lbs. CAUTION No fighter transient support available in accordance with ACC LSET Flash Safety 06–02. Transient fighter units should provide their own maintenance support. Foreign object damage hazard exits on all movement areas east of Twy S. FOD hazard exists on all twys and rwy, but especially on Rwy O4L–22R and twys north of Rwy O8L–26R. Fighter acft exercise extreme caution when taxiing. Hickam ramp taxi instr NOT valid within PHNL Airport Operating Area (AOA) which includes Twys A, B, portions of Twys V (south of Twy A) and T, and all rwy. Aircrews must ctc HNL twr or HNL gnd as drct prior to entering or while within the PHNL AOA. Hickam ramp will instr all acft at the Haz cargo pad adj to Twy B, Twys A1–A4, B1–B4 and PHIK ramp side portions of Twy T and V (North of Twy A). TFC PAT Overhead tcf pat all 2000 rstd to 154 WG (HIANG) and 15 Wing Ftr/C17 and Sentry Aloha acft CSTMS/AG/IMG All military acft rqr Customs/Agriculture/Immigration inspection must ctc 15 WG command post or if Air Mobility Command ctc Hickam AMMC, no later than 3 hrs prior to arrival with departure location, estimated block time, number of aircrew, Civilian/Military Passengers/Foreign Nationals/and Distinguished Visitor codes. MSC Afld.ops DSN 449–0046/0048 Fax DSN 449–7624, Wx opr H24, DSN 449–2251, C808–658–9961. Remote flt wx briefings ctc 17th Wx Sq H24, DSN (315) 449–7950/8333, FAX DSN (315) 449–8336; 2 hr prior notice rqr for timely brief. Official obsn taken by FAA. Cooperative wx watch procedures do not exist between Wx and ATC. No COMSEC material avbl thru Hickam Airfield Ops. Due to sensitivities of citizens, fighter aircraft dep only authorized from Mon–Sat 1700–0700Z, and Sun and holidays 1800–0700Z. All request for waivers will be sent to the 15 OG/CC or 154 OG/CC for HIANG aircraft at least 5 working days in advance. Waivers will be granted on extreme necessity. If short notice mission essential waivers are necessary, ctc 150G/CC by phone thru 15 WG Comd Post (15 WG/CP) or 154 OG/CC for HIANG aircraft. 15 WG Comd Post will pass approval to Hickam flight svc and Hickam ramp advisory. COMM Bedtime (All Coronet W tankers use 311.0 for tanker-fighter inter-plane on launch day. After duty hr DSN 448–8888 613AOC/AMD, Fitz Management.)
AIRPORT/FACILITY DIRECTORY
CONTINUED FROM PREcedING PAGE

AIRPORT MANAGER: 808-836-6533
WEATHER DATA SOURCES: ASOS (808) 836–0449 WSP.
COMMUNICATIONS: D–ATIS 127.9 251.15 PTD 133.6 (HICKAM)

HONOLULU CONTROL FACILITY APP CON 118.3 (West)
TOWER 118.1 123.9 (08R–26L) 257.8 273.575 (08R–26L) GND CON 121.9
ADVISORY RAMP 121.8 (HNL INTL) 133.6 254.4 (HICKAM) CLNC DEL 121.4

HONOLULU CONTROL FACILITY DEP CON 118.3 (West) 124.8 (East)
PDC
COMD POST 168.0 292.5 295.5 SHAKA OPS 125.3 349.4

AIRSPACE: CLASS B See VFR Terminal Area Chart CLASS E svc Honolulu Intl arpt.

VOR TEST FACILITY (VOT) 111.0

RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

HONOLULU (H) VORTAC 114.8 HNL Chan 95 N21º18.50´ W157º55.82´ at fld. 5/11E.

TACAN AZIMUTH & DME unusable:
055º–085º byd 15 NM blo 7,000’
251º–260º byd 20 NM blo 2,200’
261º–280º byd 20 NM blo 3,000’
281º–305º byd 20 NM blo 7,500’
306º–330º byd 30 NM blo 7,500’
331º–340º byd 32 NM blo 5,500’
360º–085º byd 15 NM blo 6,000’
360º–085º byd 25 NM blo 8,000’
360º–085º byd 30 NM blo 12,000’

VOR unusable:
055º–085º byd 15 NM blo 7,000’
100º–115º byd 30 NM blo 4,000’
120º–140º byd 35 NM blo 5,000’
170º–210º byd 20 NM blo 3,000’
240º–250º byd 30 NM blo 3,000’
241º–250º byd 35 NM blo 4,000’
251º–260º byd 20 NM blo 2,200’
261º–280º byd 20 NM blo 3,000’
281º–305º byd 20 NM blo 7,500’
306º–330º byd 30 NM blo 7,500’
331º–340º byd 32 NM blo 5,500’
351º–359º byd 25 NM blo 7,500’
360º–085º byd 15 NM blo 6,000’
360º–085º byd 25 NM blo 8,000’
360º–085º byd 30 NM blo 12,000’

KOKO HEAD (H) VORTACW 113.9 CKH Chan 86 N21º15.91´ W157º42.18´ 274º 12.6 NM to fld. 640/11E.

VOR unusable:
285º–294º byd 27 NM blo 8,000’
295º–000º byd 21 NM blo 5,500’
295º–000º byd 32 NM blo 8,000’

TACAN AZM/DME unusable:
285º–294º byd 20.5 NM blo 5,000’
285º–294º byd 27 NM blo 8,000’
295º–000º byd 19 NM blo 5,500’
295º–000º byd 26 NM blo 8,000’
295º–000º byd 32 NM blo 8,000’

EWABE NDB (MHW/LOM) 242 HN N21º19.48´ W158º02.94´ 082º 7.2 NM to fld. 43/11E.

ILS/DME 110.5 I–IUM Chan 42 Rwy 04R. Class IE.

ILS/DME 111.7 I–HNL Chan 54 Rwy 08L. Class IE. LOM EWABE NDB. Excessive oscillation over mnts ne of LOM.

LOD/DME 109.1 I–EPC Chan 28 Rwy 26L. LOC unusable byd 25 degrees north of centerline due to terrain.

ASR

COMM/NAV/WEATHER REMARKS: San Francisco Radio, see Associated Data. Excessive needle oscillation can be expected over mountainous terrain NE of NDB—CAUTION advised. Hickam ramp twr (Non–ATC facility) All acft on HIK flightline including haz cargo pad will ctc HIK Ramp prior to eng start/taxi. HIK Ramp will provide advisory directions and will relay to AFLD Ops via VHF capable acft. All acft departing to CONUS must complete USDA inspection prior to eng start/taxi. Rwys 4R and 8R wind cones in nonstandard lctn.

WATERWAY 08W–26W: 5090X300 (WATER)
WATERWAY 04W–22W: 3000X150 (WATER)

SEAPLANE REMARKS: Rwy 04W–22W and Rwy 08W–26W recreational boating activities on and in waterways.
KALAELOA (JOHN RODGERS FLD) (JRF)(PHJR) P (HANG CG) 2 S UTC–10 N21º18.44´ W158º04.22´ HAWAIIAN ISLANDS
30 B TPA—See Remarks NOTAM FILE JRF
RWY 04R–22L: H8000X200 (ASPH) 2S–175, 2T–556, 2D–287, 2D–01–479, 2D–2D–840 HIRL
RWY 04R: MALSF, PAPI(P4R)—GA 3.0º TCH 55´.
RWY 22L: PAPI(P4L)—GA 3.0º TCH 32´.
RWY 11–29: H6000X200 (ASPH) S–74, D–167, 2D–327, 2D–2D–800 MIRL 0.3% up NW
RWY 11: PAPI(P4L)—GA 3.0º TCH 48´.
RWY 29: PAPI(P4L)—GA 3.0º TCH 52´.
RWY 04L–22R: H4500X200 (ASPH) MIRL
RWY 04L: PAPI(P4L)—GA 3.0º TCH 35´.
RWY 22R: PAPI(P2L)—GA 3.0º TCH 33´.

AIRPORT REMARKS: Attended 1630–0030Z. TPA—Traffic pattern alt small aircraft 830(800), large aircraft 1030(1000). Avoid overflight refineries west of airport, gaseous exhaust plumes and flames may rise to 267´ AGL without warning. TFC: Large acft requesting Rwy 11 can expect right traffic. Occasional bird hazard approach end Rwy 04L and Rwy 04R. Potential hydroplaning all aircraft due to standing water at intersection Rwy 04R and Rwy 11. Military helicopter operations on and inv of arpt due to U.S. Coast Guard military helipad near Rwy 04R. NAVAIR 0800 R-14 NATOPS US Navy Aircraft Firefighters and Rescue Manual, Category II Airfield (ARFF INDEX B equivalent).

MILITARY REMARKS: RSTD TSNT ACFT CTC FBO for ramp AVBL, and fuel C808-518-4660.

WEATHER DATA SOURCES: AGOS 119.8 (808) 673–7454.

COMMUNICATIONS: CTAF 132.6 ATIS 119.8

HONOLULU CONTROL FACILITY APP CON 118.3

KALAELOA TOWER 132.6 (1600–0800Z) GND CON 123.8 CLNC DEL 121.7

VFR ADVYS SVC ctc HONOLULU APP CON

AIRSPACE: CLASS D svc 1600–0800Z other times CLASS E.

RADIO AIDS TO NAVIGATION: NOTAM FILE HNL.

HONOLULU (H) VORTAC 114.8 HNL Chan 95 N21º18.50´ W157º55.83´ 259º 7.8 NM to fld. 5/11E.

EWABE NDB (MHW/LOM) 242 HN N21º19.48´ W158º02.94´ 218º 1.6 NM to fld. 43/11E.

COMM/NAV/WEATHER REMARKS: Twr operated by Air National Guard. GCA OTS indef.

KANEHOE BAY MCAS (MARION E CARL FLD) (NGF)(PHNG) N 2 SW UTC–10 N21º27.03´ W157º46.08´ HAWAIIAN–MARIANA

AIRSPACE: CLASS D svc Mon–Thu 1700–1000Z, Fri 1700–0800Z, Sat 1800–0300Z (CLASS D svc only), Closed Sun and Federal holidays. Other times CLASS E.

NOTAM FILE PHNG.

KOKO HEAD N21º15.91´ W157º42.18´ HONOLULU ISLANDS HAWAIIAN–MARIANA

(II) VORTACW 113.9 CKH Chan 66 274º 12.7 NM to Daniel K Inouye Intl. 640/11E.

VOR portion unusable:
285º–294º byd 27 NM blo 8,000´
295º–000º byd 21 NM blo 5,500´
295º–000º byd 32 NM blo 8,000´
TACAN AZM/DME unusable:
285º–294º byd 20.5 NM blo 5,000´
285º–294º byd 27 NM blo 8,000´
295º–000º byd 19 NM blo 5,500´
295º–000º byd 26 NM blo 8,000´
295º–000º byd 32 NM blo 8,000´

MAUNA KAPU RCO 122.2 (HONOLULU RADIO)

MT KAALA N21º30.50´ W158º08.85´ RCO 122.6 (HONOLULU RADIO)
WAIMA P–2G

WAHIAWA

WHEeler aaf (HHI/PHHI) A 1 SW UTC–10

RWY 06–24: H5608X291 (ASPH) PCN 47 F/A/W/T HIRL 0.4% up NE

RWY 06: Thld dsplcd 570´. Rgt tfc.

RWY 24: Rgt tfc.

service: S2 LGT ACTIVATE HIRL Rwy 06–24—CTAF. Rotating bcn 1/8 mile north of twr. FUEL F24, JAA, 1700-0845Z M-F, OT by NOTAM.

Noise: Extremely noise sensitive area; avoid ovft communities surrounding Wheeler Aaf.

Military Remarks: Attended Mon–Fri 1730–0900Z, other times by NOTAM.

RSTD PPR for full stop ldg, prk and for non-tenant acft, ctc Wheeler OPS C808–656–1282, DSN 456–1282. Hillclimber Apron rstd to Unmanned Shadow (RQ–7) OPS conducted btn 140´ and 500´ fr RCL with four sets of 4´ net barriers mkr with obst lgt. No tran fixed–wing acft on Twy A thru Twy G, see AP3 for additional restrictions.

Caution: Extensive helicopter tfc inv of arpt. Night vision goggle training A311 500´ and below from 1 hr after SS thru 1 hr before SR. Extreme caution sweeper on rwy 1500–1700Z Mon–Fri. Use caution on north side of Rwy. Hold Lines are 50´ from Rwy 06–24 edge. Remain on parallel Twy A when holding for Rwy. Use caution on Twy A due to no twy edge lights and rwy hold signs installed. All fld markings are extremely faded on all aprons and twys. Blue twy edge reflectors installed on all twys north side of Rwy 06–24. TFC PAT All acft arr from north will cross arpt at or abv 2500´ enter tfc from the south. South traffic only.

Tpa—Rotary Wing 1500(657) fixed wing 2000(1157). Misc Wheeler Ops opr1730–0900Z Mon–Fri exc hols, OT by NOTAM. Practice approaches by non-tenant acft restricted and approved only contingent upon tenant acft activity. Auto wx obsn, human backup avbl H24. Human wx obsn view obst by bldg W thru NE (250°–060°). Vis evaluation is ltd to 1/6 to 1/4 mile in this sctr. Wx svcs opr 24 hrs. 2 hr PN rqr for timely brief.

Airport Manager: 808–656–2656

Communications: CTAF 126.3 ATIS 119.675 242.4 D–ATIS 808–656–1789

HONOLULU CONTROL FACILITY APP/DEP CON 118.3 269.0

TOWER 126.3 235.625 (Opr 24 hrs Mon 1730Z — Sat 0900Z; exc hol and wknd)

GND CON 121.85 237.5

Lightning Radio 141.65 239.5 (Mon–Fri after opr 1730–0900Z. Pineapple) Opr Mon–Fri 1730–0900Z.

VFR ADZY SVC ctc HONOLULU Apch Ctrl

Airspace: CLASS D svc Mon 1730Z–Sat 0900Z exc hol and wknd, other times CLASS E.

Radio Aids to Navigation: NOTAM FILE HNL.

HONOLULU (H) VORTAC 114.8 HNL Chan 95 N21º18.50´ W157º55.82´ 319º 12.0 NM to fld. 10/11E.

TERn ISLAND

FRENCH FRIGATE SHOALS (HFS/PHHF) 0 N UTC–11

RWY 06–24: 3000X200 (CORAL)

Airport Remarks: CLOSED except in emergency or PPR Fish and Wildlife.

Phone Honolulu 541–1201.

Airport Manager: (808) 541–1201

Pac, 8 Sep 2022 to 3 Nov 2022
KIRIBATI

KIRITIMATI (CHRISTMAS ISLAND)

CASSIDY INTL (PLCH) UTC–10 N01º59.18´ W157º21.00´

AOE

RWY 08–26: H6896X148 (ASPH) LIRL PCN 48 F/B/X/T

RWY 08: REIL PAPI—TCH 57´

RWY 26: REIL

RUNWAY DECLARED DISTANCE INFORMATION

RWY 08: TORA–6896 TODA–7388 ASDA–6896 LDA–6896

RWY 26: TORA–6896 TODA–7388 ASDA–6896 LDA–6896

SERVICE: FUEL 100, JET A1 LIT Wy 08–26 edge lghts spaced 312´ apart.

AIRPORT REMARKS: Attended SR–SS with 48 hr prior notice, manned only for scheduled flight. PPR for 600 gal fuel or more. 150´ mast 2 NM SW of arpt. 180° turns in turning nodes rqr for act over 12,566 lbs. All non–sked flights are required to notify civ aviation, Tarawa, not later than 1 week prior to arr giving ETA and ETD. NOTE: See Area Notices—KIRIBATI.

COMMUNICATIONS:

AFIS 118.1 3425 6553 8846 8867 3460X 6575X 8924X 11339 13300. 11339 13300 Avbl for all notified movements.

RADIO AIDS TO NAVIGATION:

CHRISTMAS ISLAND NDB 333 XI N01º59.28´ W157º21.20´ at fld. 9E. Avbl for all notified movements. No aux pwr. Opr HO.

CHRISTMAS ISLAND NDB (MHW) 333 XI at Cassidy Intl. 9E. Avbl for all notified movements. No aux pwr. Opr HO.
MARSHALL ISLANDS

ARNO ATOLL

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>ICAO Code</th>
<th>Location</th>
<th>Operating Hours</th>
<th>Remarks</th>
<th>Service</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE</td>
<td>(N28)</td>
<td>0 NW UTC+12 N07º01.00’ E171º29.00’</td>
<td>4 NOTAM FILE HNL</td>
<td>Not insp.</td>
<td>RWY 08–26: 2450X50 (GRVL–CORAL)</td>
<td>Attended on call.</td>
<td>CTAF 122.9</td>
</tr>
</tbody>
</table>

TINAK

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>ICAO Code</th>
<th>Location</th>
<th>Operating Hours</th>
<th>Remarks</th>
<th>Service</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>N18</td>
<td>N</td>
<td>UTC+12 N07º08.00’ E171º55.00’</td>
<td>4 NOTAM FILE HNL</td>
<td>Not insp.</td>
<td>RWY 05–23: 2850X45 (GRVL–CORAL)</td>
<td>Attended on call.</td>
<td>CTAF 122.9</td>
</tr>
</tbody>
</table>

ENEWETAK

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>ICAO Code</th>
<th>Location</th>
<th>Operating Hours</th>
<th>Remarks</th>
<th>Service</th>
<th>Remarks</th>
<th>Communications</th>
</tr>
</thead>
</table>

JABOR JALUIT ATOLL

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>ICAO Code</th>
<th>Location</th>
<th>Operating Hours</th>
<th>Remarks</th>
<th>Service</th>
<th>Remarks</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>JALUIT</td>
<td>(N55)</td>
<td>1 SE UTC+12 N05º54.40’ E169º38.50’</td>
<td>4 NOTAM FILE HNL</td>
<td>Not insp.</td>
<td>RWY 03–21: 5000X60 (GRVL–CORAL)</td>
<td>Attended on call.</td>
<td>Trml advisory svc.</td>
<td>CTAF 122.9</td>
</tr>
</tbody>
</table>

KILI ISLAND

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>ICAO Code</th>
<th>Location</th>
<th>Operating Hours</th>
<th>Remarks</th>
<th>Service</th>
<th>Remarks</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>KILI</td>
<td>(C51)</td>
<td>0 N UTC+12 N05º39.00’ E169º07.00’</td>
<td>5 NOTAM FILE HNL</td>
<td>Not insp.</td>
<td>RWY 04–22: 4400X100 (GRVL–CORAL)</td>
<td>Attended on call.</td>
<td>CTAF 122.9</td>
<td></td>
</tr>
</tbody>
</table>
KWAJALEIN ATOLL

BUCHOLZ AAF (KWA/PKWA) UTC+12 N08º43.21’ E167º43.90’

P–18

16 B LRA NOTAM FILE PKWA

Rwy 06–24: H6668X198 (ASPH) S–158, D–205, 2D–308 HIRL

Rwy 06: PAPI(P4L)—GA 3.0º TCH 50’.

Rwy 24: PAPI(P4L)—GA 3.0º TCH 44’.

Service: Fuel JET B+ OX 1, 2

Airport Remarks: Attended (Base Ops) 1730–0930Z Tue–Sat, 1830–0930Z Mon. RSTD–PPR, with 24 hr ntc and billeting conformation no. req for all acft, exc reg sked coml and AMC Channel msn. Communications—BUCHOLZ TWR –Opr–1900–0500Z Tues–Sat excld fed hol. (E) TWR 126.2 360.2 GND 121.9 all acft within 50 NM maint. Twr ctc. Ot ctc Base Ops 118.8 (advsy Svc only) Remarks: Class D eff 1900–0500Z Tue–Sat–Sat excld fed hol. OT Class E. SAN FRANCISCO ARINC 13462 21985 8903 17904 6532 13300 4666 11384 2998. Misc Weather available 24 hours on 119.675. Ltd staffing available from 0400–0700Z Mon, Wed, Fri and 2330–0530 Tue, Thu, Sat due to scheduled air carriers. Transient Acft with cargo must plan all up–load, down load opr btn 2000–0400Z Mon, Wed, Fri and 2330–0530 Tue, Thu, Sat. Exceptions will be considered on a day–to–day basis. Limit engine run–ups to a minimum. 250’ tower 8.5 NM PKWA bearing 300º. Electromagnetic radiation may exist 24 hrs daily within 5 NM from surface to 30,000’. CAUTION—Pilots have experienced vertigo during night operations especially during periods of reduced visibility due to lack of visual cues. Portions of Twy E not visible from tower. Avoid rain catchments on N side of rwy and taxiway. CAUTION—men equipment and vehicles may be operating in close proximity to rwy. Acft with explosive cargo require a special PPR and any additional cost of operation may be charged to shipper. Numerous trees and other obstructions within 300’ S of rwy. TACAN tower 75’ high lctd 164’ N of Twy E centerline. Airfield closed to all traffic on Sundays. Transient aircraft hours of service 1900Z–0800Z. OPS outside these hours requires US Army, Kwaialein Atoll (USAKA), Aviation Officer approval and support personnel scheduled and funded. Unattended airfield ops not authorized except in an emergency. Airfield lighting secured 30 minutes after last scheduled departure. Airfield lighting available with 30 minute response in support of in–flight emergencies. Aircraft utilizing Bucholz AAF for an emergency divert outside of regular operating hours should contact the FAA controller at Oakland Center to arrange for Base OPS/TWR personnel recall. Aircraft arriving with hazardous cargo or explosives and information on RF hazards see FLIP AP/3. Use of parallel Taxiway E limited to C–141 and smaller acft. During airfield opr periods when twr not avbl, all acft will use standard advisory procedure of section 4–1–9 of US AIM and self announce all movements on CTAF and ground and within 1.0 NM of the arpt. NOTE: See Area Notices—MARSHALL ISLANDS. Twy A and Twy E are weight restricted for the following acft: B737, B757, B767, C–5, C–17, C–130, C–141, and DC–8 back taxi and 180º turn on rwy will be required, for either arr or dep. Exceptions may be granted for Twy A, in order to access explosive cargo parking locations.

Communications:

SAN FRANCISCO ARINC (KWA). NOTAM FILE PKWA.

ROI RADIO 118.1

GND CON 121.9

Airspace: Class D svc Tue–Sat 1945–0415Z excluding holidays; other times CLASS G.

Radio Aids to Navigation: NOTAM FILE HNL.

NDB (HW) 359 NDJ N08º43.25’ E167º43.67’ at fld. 15/9E.
<table>
<thead>
<tr>
<th>AIRPORT/FACILITY DIRECTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYESS AAF (ROI)(PKRO) UTC+12 N09°23.81´ E167°28.25´ P–1B</td>
</tr>
<tr>
<td>RWY 04–22: H4499X150 (ASPH) PCN 11 F/B/W/T</td>
</tr>
<tr>
<td>RWY 04: PAPI(P4L)—GA 3.0º TCH 38’.</td>
</tr>
<tr>
<td>RWY 22: PAPI(P4L)—GA 3.0º TCH 38’.</td>
</tr>
<tr>
<td>AIRPORT REMARKS: No facilities—ARFF available. No transient acft authorized. Electromagnetic radiation will exist 24 hrs daily within 10 NM radius of Dyess AAF from surface to 50,000. Acft within the abv airspace will be exposed to direct radiation which may produce harmful effect to persons and equipment. REIL available Rwy 04 with prior notice. Five lighted antennae; 263 dish located 0.6 NM E, 175 dish located 0.7 NM ENE, 273 located 1.3 NM SE, 150 located 800 S, 210 located 0.4 NM N NW. Military rotating beacon atop 137 water tower 950 SE. Taxiway lighted. NOTE: See Area Notices—MARSHALL ISLANDS.</td>
</tr>
<tr>
<td>COMMUNICATIONS: SAN FRANCISCO ARINC (HNL) NOTAM FILE HNL.</td>
</tr>
<tr>
<td>ROI RADIO 118.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJURO ATOLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJURO N07°03.92´ E171°16.11´ NOTAM FILE HNL P–1B</td>
</tr>
<tr>
<td>NDB/DME (HW/DME) 316 MAJ Chan 114 at Marshall Islands Intl. 4/10E. DME Chan 114 paired with VHF freq 116.7</td>
</tr>
</tbody>
</table>

| **AMATA KABUA INTL** (MAJ)(PKMJ) 7 SW UTC+12 N07°03.90´ E171°16.32´ P–1B |
| **AIRPORT REMARKS** |
| **AIRPORT MANAGER** (692) 247-3113 |
| **COMMUNICATIONS**: CTAF 123.6 |
| MAJURO RADIO 123.6 LAA 126.6 emerg only 5205X USB emerg only 2182 emerg only. |
| **RADIO AIDS TO NAVIGATION**: MAJURO NDB/DME (HW/DME) 316 MAJ Chan 114 N07°03.92´ E171°16.11´ at fld. 4/10E. DME Channel 114 paired with VHF freq 116.7. |

<table>
<thead>
<tr>
<th>MEJIT ATOLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEJIT (C30) 0 NE UTC+12 N10°17.00´ E170°53.00´</td>
</tr>
<tr>
<td>AIRPORT REMARKS:</td>
</tr>
<tr>
<td>AIRPORT MANAGER (692) 625-6179</td>
</tr>
<tr>
<td>COMMUNICATIONS: CTAF 122.9</td>
</tr>
</tbody>
</table>
MILI ISLAND
MILI (1Q9) O N UTC+12 N06º05.00´ E171º44.00´
4 NOTAM FILE HNL Not insp.
RWY 05–23: 2850X75 (TURF)
AIRPORT REMARKS: Attended on call.
COMMUNICATIONS: CTAF 122.9

NAMORIK ATOLL
NAMORIK (3N0) O NE UTC+12 N05º37.90´ E168º07.50´
15 NOTAM FILE HNL Not insp.
RWY 07–25: 2900X45 (GRVL–CORAL)
AIRPORT REMARKS: Attended on call.
COMMUNICATIONS: CTAF 122.9

TAORA ISLAND/MALOELAP ATOLL
MALOELAP (3N1) O E UTC+12 N08º42.50´ E171º14.00´
4 NOTAM FILE HNL Not insp.
RWY 04–22: 3500X150 (TURF)
AIRPORT REMARKS: Attended on call.
COMMUNICATIONS: CTAF 122.9

UTIRIK ATOLL
UTIRIK (3N3) O SE UTC+12 N11º14.00´ E169º51.00´
4 NOTAM FILE HNL Not insp.
RWY 07–25: 2400X50 (GRVL–CORAL)
AIRPORT REMARKS: Attended on call.
COMMUNICATIONS: CTAF 122.9

WOTJE ATOLL
WOTJE (N36) O E UTC+12 N09º28.00´ E170º14.00´
4 NOTAM FILE HNL Not insp.
RWY 13–31: 4275X75 (TURF)
AIRPORT REMARKS: Attended on call.
COMMUNICATIONS: CTAF 122.9
AIRPORT/FACILITY DIRECTORY

MIDWAY ATOLL

HENDERSON FLD (MDY)(PMDY) P O SW UTC–11 N28º12.09’ W177º22.88’ P–1B

12 B Class IV, ARFF Index A NOTAM FILE MDY

RWY 06–24: H7800X150 (ASPH) S–120, D–230, 2D–430 PCN 56 F/A/W/U MIRL

RWY 06: REIL, PAPI(P4L)—GA 3.0º TCH 80’.

RWY 24: REIL, PAPI(P4L)—GA 3.0º TCH 80’.

RUNWAY DECLARED DISTANCE INFORMATION

RWY 06: TORA–7800 TODA–7800 ASDA–7800 LDA–7800

RWY 24: TORA–7800 TODA–7800 ASDA–7400 LDA–7400

SERVICE: LGT ACTVT REIL Rwy 06 and 24; PAPI Rwy 06 and 24; MIRL Rwy 06–24—126.2.

AIRPORT REMARKS: Attended 1900–0400Z. Use freq 126.2 for all inbound and outbound communications. Arpt clsd to all tran acft. Arpt open for ETOPS and approved acft ops only. Approved acft ops permitted only during hrs of darkness Nov–Jun due to heavy bird activity. PPR for ldg for approved acft ops from arpt manager 24 hrs in advance due to heavy bird activity. Use freq 126.2 monitored 1900–0400Z and during approved acft ops. Arpt advisory on 126.2. Except when necessary for tkf and lndg, all acft maintain minimum alt of 5,000 MSL within 12 miles of arpt. Be alert for heavy bird strike hazards at all times. Current bird activity status avbl during initial ctc inbound and prior to tkf and ldg on freq 126.2. Arpt advisory on 126.2.

AIRPORT MANAGER: (808) 954–4829

WEATHER DATA SOURCES: AWOS-3P 118.325 (808) 674–9286.

COMMUNICATIONS: CTAF 122.9

AIRSPACE: CLASS E svc

RADIO AIDS TO NAVIGATION: NOTAM FILE MDY.

MIDWAY NDB (HW) 400 MDY N28º12.25’ W177º22.75’ at fld. 16/10E.

COMM/NAV/WEATHER REMARKS: No ATCT ops. Inbound ctc 100 NM out for advisories. CTAF not monitored ctc freq 126.2. Freq 126.2 monitored 1900–0400Z and during approved acft ops. Arpt advisory on 126.2.

PAC, 8 SEP 2022 to 3 NOV 2022
NORTHERN MARIANA ISLANDS

PAGAN ISLAND

PAGAN AIRSTRIP (TT01) O S UTC+10 N18º07.47´ E145º46.12´
34 NOTAM FILE HNL Not insp.
RWY 11–29: 1500X120 (TURF–GRVL) S–4 1.5% up E
RWY 11: Trees.
RWY 29: Brush.
AIRPORT REMARKS: Unattended. Arpt CLOSED indefinitely. Survey marker 1 foot high on centerline, approach end of Rwy 11.
COMMUNICATIONS: CTAF 122.9

ROTA ISLAND

BENJAMIN TAISACAN MANGLONA INTL (GRO)(PGRO) 6 NE UTC+10
N14º10.46´ E145º14.47´
606 B TPA—See Remarks LRA Class I, ARFF Index A NOTAM FILE HNL
RWY 09–27: H7000X150 (ASPH–GRVD) S–90, D–130, 2D–220 PCN 57 F/A/X/T MIRL 0.3% up E
RWY 09: REIL. PAPI(P4L)—GA 3.0º TCH 45˚.
RWY 27: PAPI(P4L)—GA 3.0º TCH 45˚. Rgt tft.
RUNWAY DECLARED DISTANCE INFORMATION
RWY 09: TORA–7000 TODA–7000 ASDA–7000 LDA–7000
SERVICE: LGT REIL Rwy 09, PAPI Rwy 09 and 27, MIRL Rwy 09–27, tway lgts and windcone oper 2000–0800Z. After 0800Z and durg emergencies ACTVT REIL Rwy 09, PAPI Rwy 09 and 27, MIRL Rwy 09–27, tway lgts, windcone—CTAF. Rotating bcn located 950’ south of ARP and 300’ west of terminal bldg centerline extended.
AIRPORT REMARKS: Attended 2000–0800Z. Rdo operator, ARFF psnl, and Wx daily 2000–0800Z. Lgtd twr 1798’ MSL (262’ AGL) located 4 miles southwest of arpt. PPR for unsked acft opns fm Rota flight service. Immigration customs and quarantine avbl during scheduled acft operations, other times prior arrangements must be made with field supervisors (670) 532–0026/0027/9455/9493 respectively. TPA—Large and Turbine powered acft 2100(1494), small acft 1600(994).
AIRPORT MANAGER: (670) 532–9497
COMMUNICATIONS: CTAF 123.6
ROTA RADIO 123.6
GUAM ARTCC APP/DEP CON 120.5
RADIOS AIDS TO NAVIGATION: NOTAM FILE HNL.
ROTA NDB (HW) 332 GRO N14º10.30´ E145º14.40´ at fld. 587/2E.

PAC, 8 SEP 2022 to 3 NOV 2022
SAIPAN ISLAND

COMMONWEALTH HEALTH CENTER HELIPORT (C21) 1 E UTC+10
N15º12.59´ E145º43.47´
H1; H4X45 (CONC)
HELIPAD REMARKS: Attended continuously. Rwy H1 110’ hotel bldgs west and 85’ water tank east of helipad.
AIRPORT MANAGER: (670) 234–8950
COMMUNICATIONS: CTAF 125.7

FRAN CISO/CADA/SAIPAN INTL (GSN)(PGSN) 4 SW UTC+10 N15º07.21´ E145º43.80´
214 B TPA—See Remarks AOE Class I, ARFF Index D
NOTAM FILE GSN
RWY 07–25: H8699X200 (ASPH–GRVD) S–87, D–175, 2D–350, 2D/2D2–690 PCN 67 F/A/X/T HIRL
RWY 07: MALSR. PVASI(PSIL)—GA 3.0º TCH 57’. Rgt tlc.
RWY 25: REIL PAPI(PL4)—GA 3.0º TCH 75´
RWY 06–24: H7001X100 (ASPH) PCN 67 R/A/X/T MIRL
RWY 06: PVASI(PSIL)—GA 3.0º TCH 43´. Thld dispclcd 396´.
RWY 24: PVASI(PSIL)—GA 3.0º TCH 43´.

RUNWAY DECLARED DISTANCE INFORMATION
RWY 06: TORA–7000 TODA–6800 ASDA–6645
RWY 07: TORA–8699 TODA–8669 ASDA–8644 LDA–8010
RWY 24: TORA–6400 TODA–7000 ASDA–6302
RWY 25: TORA–8699 TODA–8699 ASDA–8045 LDA–8010

SERVICE: FUEL 100, 100LL, JET A1+ LGT SS–SR.
RWY 07 VASI restricted to 2.5 NM and 5º left and right of rwy cntrln due to intensity. Rwy 06 VASI restricted byd 6º left and 8º right of rwy cntrln.
RW 24 VASI restricted byd 7º left and 6º right of rwy cntrln.

AIRPORT REMARKS: Attended continuously. PPR from Executive Director Commonwealth Ports Authority Saipan call (670) 237–6500 other times call 670-237-6535. For Apt Security call (670) 237–6529. Immigration and Customs available during scheduled operations. Other times prior arrangements must be made with CBP port director call (670) 288–0025/(670) 483–3542 (cell), P.O. Box 501055 Saipan MP 96950. TPA—Traffic pattern altitude for large and turbine powered acft 1699(1485), small aircraft 1199(985).

AIRPORT MANAGER: (670) 237–6500
WEATHER DATA SOURCES: ASOS (670) 288–5017. SAWRS.
COMMUNICATIONS: ATIS 127.2
GUAM ARTCC APP/DEP CON 118.4
TOWER 125.7 GND CON 121.8
AIRSPACE: CLASS D svc
RADIO AIDS TO NAVIGATION:
SAIPAN NDB (HW) 312 SN N15º06.68´ E145º42.62´ 066º 1.2 NM to fld. 83/2E.
ILS/DME 109.9 I–GSN Chan 36 Rwy 07.

SAIPAN N15º06.68´ E145º42.62´ NOTAM FILE GSN
NDB (HW) 312 SN 066º 1.2 NM to Francisco C Ada/Saipan Intl. 83/2E.
TINIAN ISLAND

TINIAN INTL (TNI)(PGWT) 1 N UTC+10 N14º59.95´ E145º37.16´
270 B Class I, ARFF Index A NOTAM FILE HNL

RWY 08–26: H8600X151 (ASPH–CONC–GRVD) S–75, D–200, 2D–400, 2D/2D2–832
PCN 61 F/A/X/T MIRL 0.4% up E.
RWY 08: REIL. PAPI(P4L)—GA 2.98º TCH 43´. Hill.
RWY 26: REIL. PAPI(P4L)—GA 2.99º TCH 45´. Rgt tfc.

RUNWAY DECLARED DISTANCE INFORMATION

RWY 08: TORA–8600 TODA–8600 ASDA–8600 LDA–8600
RWY 26: TORA–8600 TODA–8600 ASDA–8600 LDA–8600

SERVICE: LGT
For REIL Rwy 08 and Rwy 26, PAPI Rwy 08 and Rwy 26, MIRL Rwy 08–26, ctc airport 2000–1000Z on CTAF 123.6. For emergencies between 1000–2000Z lghts can be requested by contacting port police (670) 433–9295/9294 or CTAF 123.6

AIRPORT REMARKS: Attended 2000–1000Z, other times PPR from Commonwealth Ports Authority Tinian manager, Tinian call 670–433–9296/94 Mon–Sun. Arpt CLSD to unscheduled air carrier operations with more than 10 pax seats except 24 hrs PPR rqr in writing to arpt manager. P.O. Box 235, Tinian MP 96952. ARFF svc available 2000–0930Z and for air carrier ops with more than 9 passenger seats. Cust avbl dur sked ops. OTR times prior arrangements must be made with Customs Border Patrol Protection Saipan call 288-0028. Traffic pattern altitude for large and turbine powered acft 1803(1532); small acft 1303(1032).

AIRPORT MANAGER: (670) 433–9294

COMMUNICATIONS: CTAF 123.6

GUAM ARTCC APP/DEP CON 118.4

RADIO AIDS TO NAVIGATION

SAIPAN NDB (HW) 312 SN N15º06.68´ E145º42.62´ 216º 8.7 NM to fld. 83/2E.
ANGAUR ISLAND

ANGAUR AIRSTRIP (ANG) 30 SW UTC+9 N06º54.00´ E134º09.00´

20 NOTAM FILE HNL

RWY 05–23: 7000X150 (GRVL)

RWY 05: Trees.

RWY 23: Trees.

AIRPORT REMARKS: Unattended.

COMMUNICATIONS: CTAF 122.9

BABELTHUAP ISLAND

BABELTHUAP/KOROR (ROR)(PTRO) 4 NE UTC+9 N07º22.04´ E134º32.66´

177 B NOTAM FILE HNL

RWY 09–27: H7200X150 (ASPH–CONC–PFC) S–75, D–190, 2S–175, 2D–300 MIRL

RWY 09: REIL, PAPI(P4L)—GA 3.0º TCH 52´.

RWY 27: REIL, PAPI(P4L)—GA 3.0º TCH 52´. Trees.

SERVICE: JET A1 LGT For MIRL Rwy 09–27 and rotating beacon contact KOROR RADIO—123.6.

AIRPORT REMARKS: Attended continuously. Be alert to large number of birds on rwy at night. ARFF avbl 2 hrs prior to scheduled acft arr and until 1 hr after dep. All unscheduled flts must file a flt plan at least 7 days prior to arr and all flts must ctc Koror Communications on 123.6 at least 20 min prior to arr. Entry permit rqr call 011 (680) 488–2498, fax 011 (680) 488–4385, Idg permit rqr must give 7 days notice call 011 (680) 488–2111 fax 011–680–488–3207. All acft exceeding 100,000 lbs GWT taxi to thld turn around before taxing to apron. Acft under 100,000 lbs GWT may make a turn around where feasible.

AIRPORT MANAGER: (680) 488–2111

COMMUNICATIONS: CTAF 123.6

RADIO AIDS TO NAVIGATION:

KOROR NDB/DME (HW/DME) 371 ROR Chan 104 N07º22.13´ E134º33.02´ at fld. 183/1E. DME channel 104 paired with VHF freq 115.7

DME unusable:

006º–030º byd 25 NM blo 4,500´

031º–050º byd 25 NM blo 3,500´

051º–220º byd 25 NM blo 2,200´

221º–240º byd 25 NM

241º–290º byd 25 NM blo 3,500´

291º–335º byd 25 NM

336º–360º

COMM/NAV/WEATHER REMARKS: LAA available 2hrs prior to scheduled acft arrival and until 1hr after departure.

PELELIU (C23) 20 SW UTC+9 N07º00.00´ E134º14.00´

9 NOTAM FILE HNL

RWY 04–22: 6000X40 (GRVL)

RWY 04: Trees.

RWY 22: Trees.

COMMUNICATIONS: CTAF 122.9
Wake Island

Wake Island Airfield (AWK)(PWAK) AF 0 N UTC+12 N19º16.95’ E166º38.20’

ARRESTING GEAR/SYSTEM
HOOK BAK–12B (4921’). RWY 28

MILITARY REMARKS: Attended Mon–Sat 2000–0400Z (0800–1600L), except holidays. RSTD PPR for all acft at least 24 hr in advance. Email for PPR req form: PRSCDET1.AIRFIELD.MANAGEMENT@US.AF.MIL. After PPR apvl, PWAK ETA/ETD deviations byd 2 hr rqr reapprval. Base Ops fone DSN 315-424-2101, C808-424-2101, FAX DSN 315-424-2165. Very limited opr status, avbl for emergency ldg and minimal priority tfc. Emerg divert acft outside published hrs, ctc FAA controller at Oakland Center to arrange base ops/ATC specialist personnel recall via Wake fire dispatch at phone (808) 424–2911 primary or (808) 424–2232 secondary. No aircraft maintenance available. Twy line restriction located at intersection of Twy E and Twy D. Restriction continues west onto the warm–up pad, does not provide wingtip clearance to acft with wingspan greater than 60’. CAUTION Rwy markings worn/faded. Rwy is non–precision instrument rwy but is painted to precision instrument standards. Be alert to bird hazard on approach to Rwy 10 and Rwy 28 departure. 4’ x 8’ area of gradual pavement rise (hump) of apx 2” lctd 2300’ E of apch end Rwy 10, 40’ rgt of cntrln. Be alert to ocean vessels with mast approximately 125’ periodically located at mooring buoys 3600’ west of thld Rwy 10. Alf’d has mixture of regular and LED obstruction lghts. LED obstruction lghts may not be visible to some NVD. TFC PAT—right break Rwy 10 all acft, left break Rwy 28 all acft. DD–175–1 MISC ETOPS divert location. Firefighting svcs reduced to NFPA category 7, ARFF Index C. Remote WX briefings avbl 24 hrs from 17 OWS at DSN 315–449–8333/7950 or 448–3809, 2 hr notice rqr for timely brief. When normal SATCOM out of svc, IMARSAT is available. Space avbl passengers are not allowed to remain overnight. Rwy 10–28 900’ coral overrun.

AIRPORT MANAGER: (808) 424–2101/2000

WEATHER DATA SOURCES: AWOS–3P

COMMUNICATIONS:

WEATHER DATA SOURCES: AWOS–3P

COMMUNICATIONS:

WEATHER DATA SOURCES: AWOS–3P

COMMUNICATIONS:

WEATHER DATA SOURCES: AWOS–3P

COMMUNICATIONS:
HONOLULU (DANIEL K INOUYE INTL) AIRPORT
TOWER DATA LINK SYSTEM

Tower Data Link System (TDLS) operational, Pre-departure Clearance (PDC) available at Honolulu (Daniel K Inouye Intl) Airport. To participate, e-mail 9–AWA–ATS–PDC@faa.gov or contact Gary Norek at FAA, Airspace and Procedures, ATO–T, 800 Independence Ave., SW, Washington, DC, 20591, telephone (202) 385–8510.

HONOLULU (DANIEL K INOUYE INTL) AIRPORT
HNL RUNWAY INCURSION AND WRONG SURFACE LANDING RISKS

Runways 04–22 Runway Incursion Risk: The runway holding position markings (hold lines) between Runway 04L–22R and Runway 04R–22L are relocated, with minimal space of approximately 20 feet between them. Pilots are reminded to hold short of the parallel runway until a clearance is received to cross that runway. ATC is aware that the aircraft tail may not be clear of the exiting runway and is restricting arriving and departing aircraft on that runway.

For additional information, enter this link into your web browser to view a short video on FAA’s You Tube Channel: https://youtu.be/OzwZvJpGls.

Wrong Surface Landing Risk: Rwy 04R/Rwy 04L thresholds. Pilot expectation bias or runway confusion cause a potential for wrong runway landings. Pilots are reminded to acknowledge landing runway assignment and visually confirm lined up for the correct runway.

For additional information contact Honolulu Control Facility (HCF) at 808-840-6100.

LASER LIGHT OPERATION
Keck Observatory, Gemini Observatory and Subaru Observatory

A permanent laser light operation is being conducted nightly between sunset and sunrise at Keck Observatory and Gemini Observatory N19–49–26/W155–28–09, Kamuela VOR (MUE) 122 degree radial at 16 nautical miles. The laser beam may be injurious to eyes if viewed on axis. Cockpit illumination and flash blindness may also occur if the beam enters the cockpit. Honolulu Control Facility, (808) 840–6201 is the FAA coordination facility.

Maui Space Surveillance Complex

A permanent laser light operation is being conducted nightly between sunset and sunrise at the Maui Space Surveillance Complex (MSSC) N204231/W1561528, Maui VOR (OGG) 131 degree radial at 15 nautical miles. The laser beam may be injurious to eyes if viewed on axis. Cockpit illumination and flash blindness may also occur if the beam enters the cockpit. Honolulu Control Facility, (808) 840–6201 is the FAA coordination facility.
DANIEL K INOUYE INTL (HNL) ARRIVAL ALERT

Landing Northeast
RWY 4L and RWY 4R

Pilot sometimes confuse RWY 4L and RWY 4R.

Not for Navigational Purposes
For Situational Awareness Only
For Inquiries: 9-awa-RunwaySafety@faa.gov
Effective 19 MAY 2022 to 16 MAY 2024
GENERAL NOTICES

CHANGE NOTICE

A Change Notice will only be issued for safety considerations such as when an amended or original instrument approach procedure is issued.

VMC FLIGHT (VFR)

1. The Oakland OCA/FIR, unless otherwise specified, is classified as class A airspace from FL055 to FL600 (IFR only). VMC flights are not authorized in class A airspace but may operate within the Oakland Oceanic FIR as follows:
 a. At or below FL055 (class G).
 b. In class D and E airspace.
 c. In the airspace surrounding Pacific islands located within the Oakland OCA/FIR with the following restrictions:
 (1) Between sunrise and sunset; and
 (2) When operating less than 100 NM of shoreline of any landmass; and
 (3) Below FL200:

 NOTE: VMC Flights operating within 100 NM of landfall are not considered to be “over water” flights.

2. All “over water” VMC flights planning to operate outside of controlled airspace (class G) but on routes within the Oakland Oceanic FIR are required for national security to file an ICAO flight plan.
 a. The flight plan shall contain reporting points along the route not more than 80 minutes apart.
 b. It is the VMC pilots’ responsibility to open and close their VMC flight plan with Oakland ARTCC.

3. All over water VMC flights are required to maintain a continuous listening watch on the appropriate frequency, and make position reports at all filed reporting points on the appropriate HF frequencies.
 NOTE: Satphones do not meet the “continuous listening watch” requirements as prescribed by ICAO.

4. Flight following and alerting services are provided by ATC for all over water flights.

5. State owned aircraft (military, customs etc.) may operate VFR within the Oakland Oceanic FIR if exercising “Due regard.”

LATERAL AND VERTICAL LIMITS OF OCEANIC CONTROL AREAS

1. The Oakland OCA is aligned laterally to coincide with the Oakland Oceanic FIR, except for that portion of Fukuoka OCA that has been delegated to Oakland ARTCC for provision of air traffic control services as defined below:
 a. Within the area bounded by 21ºN/151ºE, 21ºN/155ºE, 23º31´39”N/155ºE.
 b. Within the area bounded by 27ºN/161º04´50”E, 27ºN/165ºE, 29ºN/165ºE.

2. A portion of Oakland OCA has been delegated to Fukuoka ATMC for provision of air traffic control services within the area bounded by 23º31´39”N/155ºE, 27ºN/155ºE, 27ºN/161º04´50”E.

3. The Oakland OCA has a lower limit of FL055, except where Class D or E airspace is designated; there is no upper limit.

ADDRESSING FLIGHT PLANS WITH OAKLAND OCEANIC

All aircraft entering Oakland OCA/FIR (KZAK) must address the ICAO flight plans to KZAKZQZX and KSFOXAAX.

OCEANIC IFR SEPARATION STANDARDS

1. LONGITUDINAL: At least 10 minutes between turbojet aircraft on the same or continuously diverging course. Non-turbojet aircraft, at least 15 minutes. Between two RNP-10 aircraft with ADS-C connections, 50 nautical miles and between two RNP-4 aircraft with ADS-C connections, 30 nautical miles.

2. CROSSING: All aircraft at least 15 minutes.

3. LATERAL: At least 100 nautical miles between intended routes, 50 nautical miles between aircraft certified RNP–10 and 30 nautical miles between aircraft certified RNP–4. Lateral separation minima may be reduced in some cases when suitable NAV AIDS are available.

4. VERTICAL: Oakland OCA is classified as Reduced Vertical Separation Minimum (RVSM) airspace. Vertical separation standards are therefore at least 1,000 feet from the lower limit to flight level 410. Above flight level 410 at least 2,000 feet.
GENERAL NOTICES

LOWER SEPARATION MINIMA – OAKLAND OCEANIC FIR

In accordance with ICAO Regional Supplementary Procedures – DOC 7030 PAC Region 6.2.6, notice is hereby given that separation lower than those specified in 6.2.1 and 6.2.2 may be applied in accordance with PANS–ATM DOC 4444 within the Oakland Oceanic FIR/OCA. The use of lower separation standards within the airspace listed below is contingent upon satisfactory and current flight check data of the navigational aids.

AIRSPACE

100 NM seaward of the boundary of the Honolulu Domestic area
50 NM of Guam
130 NM of Wake Island
40 NM of Wake Island
130 NM of Midway Island
40 NM of Midway Island
50 NM of Majuro Island
50 NM of Kwajalein Island
50 NM of Weno Island/Chuuk
50 NM of Yap Island
50 NM of Ponape Island
50 NM of Saipan Island
50 NM of Babelthuap Island/Koror

NAVIGATIONAL AIDS

SOK, LIH, HNL, MIK, LNY,
OGG, ITO, UPP and KOA VORTACS
AJA NDB
AWK VORTAC FL180–450
AWK VORTAC SFC–FL180
NGM TACAN FL180–450
NGM TACAN SFC–FL180
MAJ NDB/DME
NDJ NDB
TJK NDB/DME
YP NDB/DME
PNI NDB/DME
SN NDB
ROR NDB/DME

MACH NUMBER TECHNIQUE

1. The minimum longitudinal separation between aircraft may be reduced with the application of Mach Number Technique (MNT) thereby improving airspace utilization.

2. APPLICATION

a. MNT may be used only between turbojet aircraft following the same or continuously diverging track, which have reported over a common point.

b. MNT can only be applied between aircraft that are assigned a single cardinal altitude or the aircraft concerned are in level, climbing or descending flight.

c. Longitudinal separation between aircraft using MNT is based on the aircraft maintaining the assigned Mach number at all times, including during climb and descent. If it is not feasible, for operational reasons, to maintain the last assigned Mach number, the pilot shall advise ATC at the time of the initial clearance or subsequent climb/descent request or clearance.

d. Aircraft shall adhere to the Mach number assigned by ATC and shall obtain approval before making any change to the Mach number. If it is essential to make an immediate change in Mach number (i.e. due to turbulence) ATC shall be notified as soon as possible that such a change has been made.

e. MNT SEPARATION MINIMA. When the lead aircraft maintains the same Mach number of the following aircraft the minima when using MNT is 10 minutes.

f. REDUCTIONS TO SEPARATION WHEN APPLYING MNT.

(1) To apply reductions, it must be possible to ensure that the required time interval will exist at the common point from which the aircraft either follow the same track or continuously diverging tracks.

(2) Both turbojet aircraft will be assigned an appropriate Mach number. The lead aircraft will be assigned a Mach number greater than the following aircraft. Separation minima are as follows:

<table>
<thead>
<tr>
<th>Difference in Mach number</th>
<th>Minimum separation between aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02 Mach</td>
<td>9 Minutes</td>
</tr>
<tr>
<td>0.03 Mach</td>
<td>8 Minutes</td>
</tr>
<tr>
<td>0.04 Mach</td>
<td>7 Minutes</td>
</tr>
<tr>
<td>0.05 Mach</td>
<td>6 Minutes</td>
</tr>
<tr>
<td>0.06 Mach</td>
<td>5 Minutes</td>
</tr>
</tbody>
</table>

g. MNT WITH FASTER AIRCRAFT BEHIND. Mach Number Technique may be applied when faster aircraft will follow another aircraft at the same flight level. In this case, longitudinal separation may be established during transition from offshore airspace to the OCA, or when both aircraft are within oceanic airspace. Sufficient longitudinal separation will be applied to ensure at least 10 minutes separation until another form of separation is achieved.
USE OF VERY HIGH FREQUENCY (VHF) AND HIGH FREQUENCY (HF) FOR COMMUNICATIONS

Due to the inherent “line of sight” limitations of VHF radio equipment when used for communications in international oceanic airspace, those aircraft operating on an IFR or controlled VFR flight plan beyond the communications capability on the assigned VHF will be required as per ICAO Annex 2 to maintain a continuous listening watch and communications capability on the assigned HF frequencies. These frequencies are listed in Section IV of this Chart Supplement as part of the general–purpose communication facilities operated by Collins Aerospace (San Francisco Radio). These facilities will be responsible for the relay of position reports and other pertinent information between the aircraft and Air Traffic Control.

NOTE: Use of satellite telephones does not provide a continuous listening watch and therefore does not meet minimum ICAO requirements. However satellite telephones may be used as a backup to HF communications in the event an aircraft is unable to contact San Francisco Radio on HF. Satellite voice equipped aircraft may call San Francisco Radio at SATCOM SHORT CODE 436625 to transmit messages.

DIRECT SATVOICE CAPABILITY

Oakland Center Oceanic has the capability for air/ground and ground/air satellite telephone service (SATVOICE). Direct SATVOICE contact between the pilot and the Front Line Manager at Oakland Center Oceanic shall be limited to distress and urgency situations or other exceptional circumstances only. Aircraft desiring to contact Oakland Center Oceanic should use the following INMARSAT security numbers:

| INMARSAT number | 436697 |

PAC, 8 SEP 2022 to 3 NOV 2022
SPECIAL PACIFIC AREA COMMUNICATIONS

Frequency 123.45 MHz has been designated for use in air-to-air communications between aircraft operating in the Pacific area out of range of VHF ground stations to exchange operational information and facilitate resolution of operational problems.

GUARD OF VHF EMERGENCY FREQUENCY

Pilots should remember that there is a need to continuously guard the VHF emergency frequency 121.5 MHz when on long over-water flights, except when communications on other VHF channels, equipment limitations, or cockpit duties prevent simultaneous guarding of two channels. Guarding of 121.5 MHz is particularly critical when operating in proximity to flight information region (FIR) boundaries since it serves to facilitate communications with regard to aircraft, which may experience in-flight emergencies, communications, or navigational difficulties.

USE OF NONDIRECTIONAL BEACON (NDB) FOR NAVIGATION

1. The use of NDB as the “primary” source of navigation for long-range oceanic flight presents the operator with numerous limitations and restrictions that are inherent in low frequency radio equipment and low frequencies signals. These include:

2. NDB of the highest power (2000 watts or more), which are maintained and flight checked as suitable for navigation, are limited in their usable service and/or reception range to no more than 75 NM from the facility at any flight level.

3. Though the operator may be able to receive standard (AM/amplitude modulation) broadcast stations with NDB equipment, primary dependence on the facilities for air navigation is a questionable operating practice. The following are some of the inherent problems associated with reception of these stations:
 a. Infrequent identification of the station.
 b. Identification of foreign language stations may be impossible without some knowledge of the language.
 c. Transmitter sites are not always collocated with studio facilities.
 d. Termination of service without notice.
 e. Weather systems causing erratic and unreliable reception of signal.
 f. Atmospheric disturbances causing erratic and unreliable reception of signal.
 g. No flight checks conducted to verify the suitability and reliability of the facility and its signal for use in air navigation.
 h. Fluctuation (bending) of signal due to “shoreline/mountain” effect.
 i. Standard broadcast stations are not dedicated for air navigation purposes.

4. Considering the limitations, the operator should make every effort to navigate the aircraft so as to maintain the “track/course” and the “tolerances” specified in the ATC clearance. An error of 10 degrees at a distance of 2000 miles equates to approximately 350 NM of course deviation; the inadequacies of the NDB as the sole source of navigation for oceanic flight must be evaluated carefully.
AMERICAN SAMOA

PROCEDURES

Inbound. About 30 miles from the airport, monitor 118.3 for broadcasts from other aircraft. At 15 miles from the airport broadcast your position, altitude and intentions. Follow this with your position on downwind, base leg and final approach.

Outbound. Monitor 118.3 for broadcasts from other aircraft before taxiing. Broadcast your position on the airport and intentions. Follow this with an announcement before you taxi onto the runway for takeoff.

HAZARDS, CAUTIONS AND WARNINGS

AMERICAN SAMOA – POWER LINES: Permanently installed power lines between island of Ofu and Olosega 400 feet ASL unlighted and unmarked.

HONOLULU CTA/HAWAII

GENERAL INFORMATION ON FLYING TO HAWAII
(Entry and Departure Requirements)

Air Commerce Regulations of the United States, Part 6, place certain responsibilities upon owners and operators of aircraft engaging in flights to and from foreign countries. Customs and other agencies concerned desire to facilitate air travel to the fullest extent possible while carrying out their responsibilities. Aircraft operators can assist by familiarizing themselves with the regulations and by complying with them under all circumstances. Failure to do so may incur substantial penalties.

The following sets forth the principal requirements of concern to private plane operators engaging in international flights.

ARRIVAL AND DEPARTURE MANIFESTS. All aircraft departing from the continental United States or Alaska or Hawaii are exempt from filing an arrival or departure manifest. Aircraft arriving from any other place are required to file arrival and departure manifests.

ADVANCE NOTICE REQUIRED. Advance notice of each arrival must be furnished to U.S. Customs officials at or nearest to the place of intended first landing who will notify the Immigration and Public Health officials.

Advance notice should be sent so as to be received in sufficient time to enable the officers designated to inspect the aircraft to reach the place of landing before the arrival of the aircraft. At most airports, at least 2 hours advance notice is required for this purpose.

Notification may be made by telephone, which is preferable, or by telegram or radio. The notice should specify the following: (a) Type of aircraft; (b) Identification number (NC number); (c) Name of pilot; (d) Place of last departure; (e) Airport of entry; (f) Number of alien and citizen passengers; and (g) Estimated time of arrival (indicating whether H.S.T., P.S.T., etc).

All aircraft entering the United States from a foreign area must give advance notice of arrival IAW 19 CFR 122.23 and 122.31. Notice must be given to the port director at the place of first landing, either directly by radio, telephone, or other method; or through FAA flight notification procedure (see International Flight Information Manual, Federal Aviation Administration). When reliable means for giving notice are not available (for example, when departure is from a remote place) a departure must be made at a place where notice can be sent prior to coming into the U.S. Notice of arrival must be furnished far enough in advance to allow inspecting U.S. Customs and Border Protection (CBP) officers to reach the place of first landing of the aircraft prior to the aircraft’s arrival. When advance notice is received, the port director will inform any other concerned Federal agency.

AIRPORTS FOR ENTRY OR REENTRY. If the operator of a private aircraft returning to or visiting the United States wishes to land at any airport of entry, advance notice of arrival is necessary. This advance notice should be sent also to the immigration and public health officers at or nearest the intended place of first landing.

If he intends to land at a place not designated as an airport of entry, he must obtain permission to make such landing and give advance notice of arrival to the customs office nearest the intended place of first landing. It is not necessary that separate requests be sent to immigration and public health officers in these cases.

WHAT TO REPORT. The advance notice should specify the type of aircraft, registration marks, name of commander, place of last departure, international airport, number of alien passengers, number of citizen passengers, and the estimated time of arrival. This advance notice should be sent in time to enable officers, designated to inspect the aircraft, to reach the place of landing before the aircraft arrives.

Upon arrival, the operator and passengers will be examined in the same manner as any international traveler. They must declare any articles acquired abroad. If any passengers or cargo are carried, an inward manifest must be filed. Customs officers can supply forms for both types of declaration, although operators should have their own supply.

IN CASE OF EMERGENCY. If an emergency landing is made in the United States, the aircraft operator should report as promptly as possible to the nearest customs, immigration and public health officers. The aircraft operator should not permit any merchandise or baggage to be removed, or any passengers to depart, without official permission unless necessary for preservation of life or property.

THE MATTER OF CHARGES. No charges are made for services during business hours when a landing takes place at any airport of entry; except that, when an aircraft arrives on a Sunday or holiday, or during other than regular hours, OVERTIME PAY WILL BE COLLECTIBLE. These charges are required by law. They may amount to as much as two days pay for each officer for any service performed on a Sunday or holiday. However, the charges are prorated where more than one aircraft is processed.
If the landing is made at a place other than an airport of entry, any expenses incurred by Government officers in going to and from the place of landing are payable by the plane operator. In addition, if the aircraft arrives on a Sunday or holiday, or during other than regular hours, OVERTIME PAY WILL BE COLLECTIBLE.

UNITED STATES LANDING RIGHTS AIRPORTS. At the following airports an application for permission to land must be submitted in advance to U.S. Customs. At least two hours advance notice of arrival must also be furnished to U.S. Customs. Advance notice of arrival may be included in your flight plan filed in Canada or Mexico if destined to an airport where flight notification service is available; this notice will be treated as an application for permission to land.

HAWAII
Lihue/Lihue Airport
Hilo/Hilo Intl
Honolulu/Daniel K Inouye Intl
Kahului/Kahului Airport

NOTE: All aircraft entering U.S. airspace from a foreign port or departing U.S. airspace for a foreign port must provide at least 1 hour advance notice to the U.S. Customs and Border Protection (CBP) via the Electronic APIS (eAPIS) at https://eapis.cbp.dhs.gov/, telephone, radio, or other means, or through the FAA. Requests for permission to land at a Hawaiian landing rights airport should be directed to 808–861–8462 ext 0.

RADAR SERVICE – HONOLULU DOMESTIC AREA
In an effort to eliminate the mid-air collision potential in the Honolulu Domestic area, civil aircraft are encouraged to take one of the following two courses of action: (1) File an IFR flight plan, if the pilot is qualified and aircraft properly equipped; (2) Take advantage of the VFR radar advisory service provided by Honolulu Control Facility, by contacting Honolulu Control Facility on 119.3 MHz for aircraft SE of Oahu, 126.5 MHz when W of Oahu, or on 124.1 MHz when NE of Oahu. Aircraft desiring this service should request VFR radar advisory service and give aircraft identification, type, altitude, position with reference to the nearest navaid or geographical location, heading and destination. If controller workload permits, radar traffic advisories will be issued after radar identification is accomplished by aircraft position correlation, or aircraft identifying turns. This is in addition to the radar services provided by Maui and Honolulu Approach Controls for aircraft in their respective areas.

RADAR SERVICE – KONA DOMESTIC AREA
Primary radar service unavailable below 5000 feet MSL east of Haleakala and south of Maunakea. In the area as described, radar services are available only to transponder equipped aircraft.

GLIDE SLOPE SIGNALS ON LOCALIZER BACK COURSE
Localizer Back Course instrument approach procedures do not utilize glide path information. In most back course areas, however, extraneous glide slope signals emanating from the front course site can be detected—THESE GLIDE SLOPE SIGNALS SHOULD BE DISREGARDED WHEN CONDUCTING LOCALIZER BACK COURSE APPROACHES.

The FAA has conducted an airborne survey to determine the level of extraneous glide slope signal at each location. Where a significant level of “fly down” glide slope signal is present, the approach chart will be annotated as an additional alert to the pilot.

BEACON REQUIREMENTS
Aircraft departing the Honolulu CTA and entering the Oakland FIR should remain on their last assigned discrete beacon code until passing the first compulsory reporting point after crossing the KZAK FIR boundary, thence adjust transponder to display code 2000 until otherwise directed by air traffic control.

HIGH FREQUENCY (HF) RADIO FREQUENCY ASSIGNMENT
Aircraft departing airports in Hawaii and entering the Oakland FIR should contact San Francisco Radio on 131.95 for HF frequency assignment prior to departure. If unable to contact San Francisco Radio prior to departure, then within ten (10) minutes of departure.
VFR FLIGHT WITHIN HAWAII

NOTE: CAUTION – HIGH DENSITY COMMUTER AND SIGHTSEEING TRAFFIC

VFR Cruising altitude at or below 3,000 feet AGL

In order to reduce traffic conflict between interisland flights at or below 3,000 feet, an informal cruising altitude program is in use in the Hawaiian islands. Recommended eastbound altitudes: 2500, 1500, 500 feet; recommended westbound altitudes: 3000, 2000, 1000 feet.

SPECIAL ALERTNESS RECOMMENDED: Pilots engaged in sightseeing Hawaii must be sure their attention is not diverted from their primary responsibility for the safe operation of their aircraft. There is extensive VFR traffic operating along shorelines of all islands. Aircraft range in size from Cessna 152 to DeHavilland DHC–7 (4–engine). These aircraft generally operate from the shoreline to three miles offshore, at altitudes below 4500 feet.

Pilots should be aware of the high density traffic areas listed below.

NORTH SHORE MOLOKAI—MAUI

The route from Koko Head (CKH) VORTAC to and along the north shore of Molokai and Maui is extremely heavily traveled by aircraft engaged in commuter and sightseeing operations. As many as seven aircraft may be operating along Molokai north shore in both east and west bound directions, simultaneously and on a routine basis. The number may be up to 15 aircraft during peak traffic periods.

VFR CHECKPOINTS: Ilio Point, Kalaupapa, and Cape Halawa on Molokai; Nakalele Point on Maui.

The following precautions are recommended:

–Maintain an especially alert watch for other aircraft. Traffic becomes concentrated in the vicinity of Ilio Point, Kalaupapa (airport), Cape Halawa, and Nakalele Point. Altitude changes should be avoided in these areas.

–Maintain an alert listening watch on 122.9 MHz and announce aircraft position, direction of flight and altitude when passing the VFR checkpoints noted above.

EXAMPLE: ROYAL 76, Ilio Point Eastbound 1500

Tango 34, Cape Halawa Westbound 2000

–Landing aircraft—Molokai Airport: Before crossing within one mile of the shoreline, or before passing abreast the VFR checkpoints noted above, arriving aircraft should broadcast position, altitude and intentions on 122.9 MHz prior to contacting Molokai Tower.

EXAMPLE: ROYAL 76 THREE WEST Ilio Point, 1500, LANDING MOLOKAI

–Landing aircraft—Kalaupapa Airport: Aircraft landing at Kalaupapa Airport should comply with transiting procedures and, when approximately five miles from the airport, broadcast position, altitude and intentions on 122.9 MHz (remaining clear of the Molokai Airport Traffic Area). Follow this up with appropriate announcements on downwind, base leg and final approach. When departing Molokai for Kalaupapa, request frequency change to 122.9 MHz after departure, in order to make these broadcasts.

Flights Through Kalaeloa Class D—Aircraft at or above 2000’, contact HCF APP on 119.1/239.05 if north of Kalaeloa Airport, 118.3/269.0 if south of the airport. Aircraft below 2000’, contact Kalaeloa Tower for instructions.

HONOLULU CLASS B AIRSPACE

OPERATING RULES AND PILOT/EQUIPMENT REQUIREMENTS

Regardless of weather conditions, an ATC authorization is required prior to operating within Class B airspace. Pilots should not request an authorization to operate within CLASS B unless the requirements of sections 91.215 and 91.131 of the FAR are met. Included among these requirements are:

(1) Unless otherwise authorized by ATC, the aircraft must be equipped with an operable two–way radio capable of communicating with ATC on appropriate frequencies for that terminal control area.

(2) No person may takeoff or land a civil aircraft at an airport within CLASS B or operate within CLASS B unless:

(a) The pilot in command holds at least a private pilot certificate; or

(b) The aircraft is operated by a student pilot who has met the requirements of FAR section 61.95.

(3) Unless otherwise authorized by ATC, each person operating a large turbine engine–powered airplane to or from a primary airport shall operate at or above the designated floors while within the lateral limits of CLASS B.

(4) Unless otherwise authorized by ATC, the aircraft must be equipped with an operable VOR or TACAN receiver.

(5) Unless otherwise authorized by ATC, the aircraft must be equipped with a 4096 code transponder with automatic altitude reporting equipment.

NOTE. ATC may, upon notification, immediately authorize a deviation from the altitude reporting requirement; however, a request for a deviation from the 4096 code transponder equipment requirement must be submitted to the controlling ATC facility at least one hour before the proposed operation.

FLIGHT PROCEDURES

A. IFR Flights

Aircraft operating within the Honolulu CLASS B airspace must be operated in accordance with ATC clearances and instructions.

B. VFR Flights

1. Arriving aircraft, or aircraft desiring to transit CLASS B should contact Honolulu Control Facility on the frequency depicted for the sector of flight with reference to the geographical center of the airport. Pilots should state, on initial contact, their position, direction of flight and destination. If holding of VFR aircraft is required, the holding point will be specified by ATC and will be a prominent geographical fix, landmark or VOR radial.

2. Aircraft departing the primary airports are requested to advise the Honolulu clearance delivery position prior to taxing of the intended route of flight and altitude. Aircraft departing from other than the primary airports should give this information on appropriate ATC frequencies or as directed by ATIS information if the route penetrates CLASS B.

3. Aircraft desiring to transit CLASS B will obtain clearance on an equitable “first–come, first–served” basis, providing the requirements of FAR 91 are met.
ATC PROCEDURES

All aircraft will be controlled and separated while operating with CLASS B, except helicopters may not be separated from other helicopters. Although radar separation will be the primary standard used, approved visual and other nonradar procedures will be applied as required or deemed appropriate. Traffic information on observed targets will be provided on a workload permitting basis to aircraft operating outside of CLASS B.

NOTE: Assignments of radar headings and/or altitudes are based on the provision that a pilot operating in accordance with visual flight rules is expected to advise ATC if compliance with an assigned route, radar heading or altitude will cause the pilot to violate such rules.

CLASS D/CLASS E AIRSPACE

Elimination of Special VFR (FAR 91.157) Operations within Certain CLASS D/CLASS E airspace (FAR 93.113)

Special VFR flight operations by fixed-wing aircraft have been suspended within Honolulu CLASS D/CLASS E airspace which contains the following airports:

Honolulu (Daniel K Inouye Intl) Airport

At all other CLASS D/CLASS E airspace, Special VFR operations will be permitted only if IFR operations are not delayed. Requests for relief from the special VFR prohibition will be considered for certain frequently recurring flight operations, including agricultural, industrial, and flights conducted by IFR-rated pilots in IFR equipped aircraft.

The ruling affects only Special VFR operations. VFR operations may continue to be conducted.

TRAFFIC ADVISORIES AT NON–TOWER AIRPORTS

The following procedures are supplemental to those described in the FAA Aeronautical Information Manual (AIM).

1. AT A NON–UNICOM AIRPORT
 a. When inbound, tune to 122.9 MHz about 15 miles from the airport (if IFR, when the controller advises: “CHANGE TO ADVISORY FREQUENCY APPROVED”) and listen for broadcasts from any other aircraft. Then, about 5 miles from the airport broadcast your position, altitude, and intentions. Follow this up with appropriate announcements of your position on downwind, base and final approach.
 b. When outbound, tune to 122.9 MHz before taxiing and listen for broadcasts from any other aircraft. Then broadcast your position on the airport and intentions. Follow this up with an announcement before you taxi onto the runway for takeoff.

2. AT AN AIRPORT LISTED AS HAVING UNICOM
 a. When inbound, tune to 122.8 MHz about 15 miles from the airport (if IFR, when the controller advises: “CHANGE TO ADVISORY FREQUENCY APPROVED”) and listen for any other aircraft communicating with the UNICOM operator. Then, about 5 miles from the airport, inform the UNICOM operator of your position, altitude and intentions.
 b. When outbound, contact the UNICOM operator on 122.8 MHz before taxiing and furnish your position on the airport and intentions.
 c. In both cases, the UNICOM operator will provide runway, wind, and at his discretion, traffic information.

3. PART TIME TOWER (WHEN CLOSED)
 a. When inbound at about 15 miles from the airport (if IFR, when the controller advises; “CHANGE TO ADVISORY FREQUENCY APPROVED”) tune to and listen for broadcasts from other aircraft on the appropriate frequency listed below. Then, about 5 miles from the airport, broadcast your position, altitude and intentions. Follow this up with appropriate announcements of your position on downwind, base and final approach.
 1. Hilo Intl – 118.1 MHz
 2. Kahului Airport – 118.7 MHz
 3. Keahole Airport – 120.3 MHz
 4. Lihue Airport – 118.9 MHz
 5. Molokai Airport – 125.7 MHz
 b. When outbound, tune to the appropriate frequency before taxiing and listen for broadcasts from any other aircraft. Then broadcast your position on the airport and intentions. Follow with an announcement before you taxi onto the runway for takeoff.

HONOLULU TERMINAL AREA – VFR CLASS B DEPARTURE ROUTES

RESPONSIBILITIES

VFR CLASS B DEPARTURE ROUTES WILL BE ISSUED ONLY UPON REQUEST. Detailed departure instructions will be furnished to others. All procedures and altitudes described in this letter are subject to weather and traffic conditions. Pilots are not relieved of their responsibilities to see and avoid other traffic, to maintain appropriate terrain and obstruction clearance, and to remain in weather conditions equal to or better than the minima required by FAR 91.155. When compliance with an assigned route, heading, or altitude is likely to compromise pilot responsibility with respect to terrain, obstruction clearance, and/or weather minima, approach control should be so advised.

DEPARTURE PROCEDURES

Before taxiing, pilots shall contact clearance delivery on 121.4/281.4 and state the current ATIS information code and requested departure procedure. Clearance delivery will issue the departure route clearance and assign transponder code. Unless otherwise directed by ATC, pilots shall depart CLASS B via the cleared route.

Example: Pilot – N86DD SHORELINE FOUR DEPARTURE WITH INFORMATION QUEBEC.

ATC – N86DD IS CLEARED OUT OF CLASS B VIA SHORELINE FOUR DEPARTURE SQUAWK 0271.

NOTE: Large acft expect clearance via radar vectors, initial heading 155º/200º

Runway 04/08L Procedures

Shoreline Six Departure

Departing Runway 04L/04R maintain runway heading to the H-1 Freeway. Departing Runway 08L maintain runway heading to Nimitz Highway. Turn right, parallel Nimitz Highway proceeding direct to the center of Honolulu Harbor. Fly
within ½ mile offshore passing abeam Kewalo Basin then within ½ mile of the shoreline until south of Diamond Head. Turn left and resume own navigation remaining within 2 miles of the shoreline until departing Class B. Fixed wing aircraft maintain 1500 feet. Helicopters maintain at or below 500 feet. Departure Control frequency will be 124.8/317.6. Procedure intended for twin engine aircraft and helicopters.

Freeway Two Departure

Depart Runway 04L or Runway 04R on runway heading to Moanalua Freeway (State Highway 78/Interstate Highway H-201), or depart Runway 08L and turn left to fly parallel to runway 04L to Moanalua Freeway. Then turn RIGHT to follow Moanalua Freeway eastbound to H-1 Freeway and Kalanianaole Highway until passing abeam Koko Head. Maintain 1500 feet. Departure Control frequency will be 124.8/317.6. Procedure restricted to helicopters and small propeller-driven aircraft only. Helicopters maintain at or below 1000 feet.

Redhill Two Departure

Depart Runway 04L/04R on runway heading to Moanalua Freeway (State Highway 78/Interstate Highway H-201) or depart Runway 08L and turn left to parallel Runway 04L to Moanalua Freeway. Then turn left and follow Moanalua Freeway northwest bound until departing Class B. Maintain 1500 feet. Departure control frequency will be 119.1/239.05. Procedure restricted to helicopters and small propeller driven aircraft. Helicopters maintain at or below 1000 feet. CAUTION: VFR traffic proceeding inbound from the H-1/H-2 Interchange descending out of 2000 feet.

Punchbowl Two Departure

Depart runway 04L/04R on runway heading to Moanalua Freeway (State Highway 78/Interstate Highway H-201) or depart runway 08L and turn left paralleling Runway 04L to Moanalua Freeway. Then turn left and follow Moanalua Freeway eastbound via the H-1 Freeway to Punchbowl. Proceed east of Magic Island, then offshore to remain within ½ mile of the shoreline until south of Diamond Head. After Diamond Head, turn left and resume own navigation remaining within 2 miles of the shoreline until departing Class B airspace. Maintain 1500 feet. Departure control frequency will be 124.8/317.6. Procedure intended for twin engine aircraft.

Runway 22/26R Procedures

NOTE: All aircraft turn on landing lights while in CLASS B.

Kona Five Departure

After departure, remain over the runway until departure end, then turn left heading 180, climb and maintain 1500 feet. Expect radar vectors to avoid traffic on Runway 26L LDA final approach course. Departure control frequency will be 124.8/317.6. Helicopters depart the south ramp and proceed direct to HNL VORTAC; do not overfly any runways. From HNL VORTAC, fly heading 180, climb and maintain at or below 1000 feet.

West Loch Five Departure

After departure turn right as soon as practicable until north of Runway 26R. Then fly direct to the center of West Loch of Pearl Harbor. Maintain 1500 feet while in Class B. Departure control frequency will be 119.1/239.05. Helicopters maintain at or below 1000 feet. Caution: VFR traffic inbound from the H-1/H-2 Interchange will be descending out of 2000 feet.

ARRIVAL PROCEDURES

North Six Arrival

Contact approach control 119.1/239.05 prior to H-1/H-2 Interchange at or above 2000 feet.

PROCEDURE WHEN CLEARED:

FIXED WING AIRCRAFT: From the H-1/H-2 Interchange, proceed direct to and cross Ford Island at 1500 feet. Proceed direct to the Navy/Marine Golf Course while maintaining 1500 feet until advised by tower. Enter left downwind Runway 4R. Downwind must be flown over Runway 8L at Taxiways G/L. Aircraft must remain north of Taxiway R. If unable, advise ATC.

HELICOPTERS: Proceed direct to Ford Island and hold, maintain at or below 1000 feet. Expect further instructions from the tower.

West Five Arrival

Contact approach control 119.1/239.05 prior to Kahe Power Plant at or above 2000 feet.

PROCEDURE WHEN CLEARED:

From Kahe Power Plant, proceed direct to the H-1/H-2 Interchange at 2000 feet.

FIXED WING AIRCRAFT: From the H-1/H-2 Interchange, via one of the following routes as assigned by approach control:

a. Runway 4R: Proceed direct to and cross Ford Island at 1500 feet. Proceed direct to the Navy/Marine Golf Course while maintaining 1500 feet until advised by tower. Enter left downwind Runway 4R. Downwind must be flown over Runway 8L at Taxiways G/L. Aircraft must remain north of Taxiway R. If unable advise ATC.

b. Runway 22L: Proceed eastbound along the H-1 Freeway then join Moanalua Freeway to Tripler Hospital. After Tripler Hospital, enter right base Runway 22L. Maintain 1500 feet until advised by tower.
HELCOPETERS: Depart the H-1/H-2 Interchange direct to Ford Island and hold, maintain at or below 1000 feet. Expect further instructions from the tower.

NOTE: Aircraft below 2000 feet should contact Kalaeloa Tower on 132.6 prior to Kahe Power Plant.

East Four Arrival

Runways 04/08 configuration. Contact App Con 124.8/317.6 prior to NORBY intersection (MKK262 radial 20 DME or CKH 112 radial 12 DME). PROCEDURE WHEN CLEARED, from NORBY, proceed southwest bound on the MKK 262 radial at or below 3500’. Expect radar vectors for right base to Runway 04R.

Freeway Four Arrival

Runways 04/08 configuration. Contact App Con 124.8/317.6 prior to CKH at or above 2000’.

PROCEDURE WHEN CLEARED:

From Koko Head, proceed direct to Waialae Golf course, then follow the H–1 Freeway to enter left downwind to Runway 04R. Downwind leg must overfly Runway 08L over Taxiway G/L. Aircraft must remain north of Taxiway R; if unable advise ATC.

Maintain 2000’ until advised by tower.

Kona Six Arrival

Runways 22/26 configuration. Contact approach control on 119.1/239.05 prior to CKH at or above 1,500 feet, or contact approach control on 124.8/317.6 prior to NORBY intersection at or below 3,000 feet. PROCEDURE WHEN CLEARED:

FIXED WING AIRCRAFT: Proceed direct to and cross Koko Head at or below 2,000 feet, then proceed to Waialae Golf Course. Follow the H-1 Freeway to enter a left base to Runway 22L. Maintain 1,500 feet until advised by the tower.

HELCOPETERS: Proceed direct to and cross Waialae Golf Course at or below 1,000 feet. Follow the H-1 Freeway to Punchbowl. Hold at Punchbowl at or below 1,000 feet.

Use caution: Turbojet aircraft will be inbound along the south shoreline.

Tripler Four Arrival

Contact Approach control 119.1/239.05 prior to H1/H2 interchange at or above 2000’. PROCEDURE WHEN CLEARED:

From H1/H2 interchange, proceed east along H1 then join Moanalua freeway to Tripler Hospital then via one of the following routes as assigned by approach control:

a. Runway 22L: After Tripler, enter right base RWY 22L. Maintain 1500 feet until advised by tower.

b. Runway 4R: Enter left downwind Runway 4R. Downwind must be flown over Runway 8L at Taxiways G/L. Aircraft must remain north of Taxiway R. Maintain 2000’ until advised by tower.

SIMULTANEOUS OPERATIONS

Simultaneous take–offs and landings on intersecting runways are common at the Honolulu (Daniel K Inouye Intl) Airport. IT IS THE RESPONSIBILITY OF THE PILOT TO DETERMINE WHETHER HE/SHE CAN COMPLY WITH A HOLD–SHORT RESTRICTION. Upon acceptance of a “HOLD–SHORT” instruction, pilots must acknowledge the clearance with a read back of “(aircraft ID), hold short rwy (rwy number).”

HONOLULU (Daniel K Inouye Intl) AIRPORT

Gatehold Procedures

THE FOLLOWING GATEHOLD PROCEDURES ARE ESTABLISHED FOR ALL NORTH AMERICA–BOUND TURBOJET DEPARTURES FROM HONOLULU (DANIEL K INOuye INTl) AIRPORT:

1. Advise clearance delivery: “identification, 10 minutes to taxi, destination, requested flight level.”

2. The statement “10 minutes to taxi” means that you will depart the blocks, taxi, tow or pushback within 10 minutes after receiving enroute ATC clearance. Failure to push–back within 10 minutes after receipt of your clearance may result in ATC canceling your clearance when other aircraft are requesting the same altitude/route assignment and is/has pushed from the gate.

3. When ATC specifies a release (take–off) time for your requested route and altitude, alternatives with no or less delay will be offered, if available. If your choice involves a release time, call for push–back at least 10 minutes prior to your release (take–off) time the intent of this procedure is to have you at the departure runway at your release time). Failure to push back 10 minutes prior to your release time may result in ATC canceling your clearance when other aircraft are requesting the same altitude/route assignment and is/has pushed from the gate.

4. ATC will not contact you if time elapses and your clearance is cancelled; it is the pilots responsibility to push–back in a timely manner. In the event the allotted time expires contact clearance delivery to verify the status of your clearance prior to calling for push–back.

5. If you wish to depart the gate and absorb the delay in a holding area closer to the departure, advise ground control of your desire.

6. When two aircraft are requesting the same altitude/route and call for clearance at approximately the same time, the first aircraft to call will receive the altitude/route. The second aircraft will receive the alternatives. The first aircraft may lose their assigned altitude/route if all the following occurs.

 a. The first aircraft has not pushed from the gate in the specified time in paragraphs 2 or 3.

 b. The second aircraft is/has pushed from the gate.

 c. The second aircraft requests that altitude after push back.

7. Enroute clearances are based on accurate “10 minute to taxi” declarations. Those flight that taxi without receiving any enroute clearance will receive no altitude/route priority.

PAC, 8 SEP 2022 to 3 NOV 2022
NOTES: 1. Compliance will ensure an orderly sequence of altitude/route assignments during peak traffic movements.
2. Oceanic departures are sequenced with Hilo and Kahului traffic.

Informal Runway Use Program

Unless runway closures, wind, weather or traffic conditions, aircraft emergencies, actual air defense missions or operational necessities require otherwise, all turbojet aircraft and all aircraft having a maximum passenger capacity of more than 30 seats or a maximum payload capacity of more than 7,500 pounds, including all models of the Convair 240, 350, and 440; Martin 202 and 404; F–27 and FH227; Hawker Siddeley 748; military fighter interceptor turbojet; and any other aircraft with a minimum zero fuel weight in excess of 35,000 pounds will be assigned runway as follows:

<table>
<thead>
<tr>
<th>GROUP I</th>
<th>GROUP II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbojet aircraft capable of 300,000 pounds gross takeoff weight or more</td>
<td>Other turbojet, turbine; 4 or more engine turbojet, and military fighter interceptor turbojet type aircraft powered and propeller driven type aircraft. (DC10, L1011, DC8, B747, B707, KC135, B52, F15, F16, E6, etc). (B727, B737, MD80, C130, etc).</td>
</tr>
</tbody>
</table>

TRADE (NORTHEAST) WIND CONDITIONS

- Departures: 8R
- Arrivals: 8L

KONA (SOUTHWEST) WIND CONDITIONS

- Departures: 26L or 22R/L
- Arrivals: 26L

AIRCRAFT LANDING RUNWAY 8L:

- For aircraft parking on the South Ramp, expect to exit Runway 4R at Taxiway D or North. Taxiway F is a primary departure point for Runway 4R.

AIRCRAFT LANDING RUNWAY 26L/R:

- Remain at traffic pattern altitudes as long as possible before beginning descent for landing.

STANDARDIZED TAXI ROUTES FROM RUNWAY 26L

Signatories to STR Letters of Agreement with Honolulu Control Facility may expect STR instructions from RWY 26L to the Terminal. After exiting runway 26L onto taxiway R3, R2 or J, if given standardized taxi route instructions by Honolulu Tower, comply with the assigned taxi route:

North Route Bravo

- From taxiway J taxi north via taxiway J, hold short of taxiway B. From taxiway R2, or R3 turn left on taxiway R, turn right on taxiway J, taxi north via taxiway J, hold short of taxiway B. Hold short of taxiway B until further taxi instructions are received.

North Route Sierra

- From taxiway J taxi north via taxiway J, turn right on taxiway B, turn left on taxiway Sierra, hold short of Runway 26R. From taxiway R2, or R3 turn left on taxiway R, turn right on taxiway J, taxi north via taxiway J, turn right on taxiway B, turn left on taxiway Sierra, hold short of Runway 26R. Hold short of Runway 26R until further taxi instructions are received.

Advisement Honolulu Tower if unable to comply with the STR instructions.

DEPARTURES – ALL RUNWAYS:

- Turn southward as soon as possible after takeoff. Remain at least one mile offshore of Waikiki, Diamond Head, Koko Head and Ewa Beach.

NOTES: 1. Cooperation of all users is expected to preclude disruption or creation of conflicting traffic flows.
2. Pilots unable to comply with the program should advise Honolulu Ground or Approach Control as soon as possible for traffic adjustments.

KAHULUI AIRPORT

Gatehold Procedures

THE FOLLOWING GATEHOLD PROCEDURES ARE ESTABLISHED FOR OVERSEAS TURBOJET DEPARTURES FROM KAHULUI AIRPORT:

1. Advise clearance delivery: “Identification, 10 minutes to taxi, destination, requested flight level.”
2. The statement “10 minutes to taxi” means that you will depart the blocks, taxi, tow or pushback within 10 minutes after receiving enroute ATC clearance.
3. When ATC specifies a release (takeoff) time of more than 15 minutes for your requested altitude/route, alternatives with no or less delay will be offered, if available. If your choice involves a release time of more than 15 minutes, advise Clearance Delivery if you desire to wait at the gate.
4. Depart the blocks within 10 minutes after receiving enroute clearance when release time is less than 15 minutes. Ready to taxi means ready to immediately depart the blocks/taxi, tow or pushback. Failure to do so will result in ATC canceling your clearance when other aircraft are requesting the same altitude/route and are ready to taxi.
5. Enroute clearances are based on accurate “10 minute to taxi” declarations. Those flights that taxi without receiving any enroute clearance will receive no altitude/route priority.

NOTES: 1. Compliance will ensure an orderly sequence of altitude/route assignments during peak traffic movements.
2. Oceanic departures are sequenced with Honolulu and Hilo traffic.
KONA INTL AT KEAHOLE (ELLISON ONIZUKA)

Gatehold Procedures

THE FOLLOWING GATEHOLD PROCEDURES ARE ESTABLISHED FOR OVERSEAS TURBOJET DEPARTURES FROM KONA INTL AT KEAHOLE AIRPORT (ELLISON ONIZUKA):

1. Advise clearance delivery: “Identification, 10 minutes to taxi, destination, requested flight level.”
2. The statement “10 minutes to taxi” means that you will depart the block, taxi, tow, or pushback within 10 minutes after receiving enroute ATC clearance.
3. When ATC specifies a release (takeoff) time of more than 15 minutes for your requested altitude/route, alternatives with no or less delay will be offered, if available. If your choice involves a release time of more than 15 minutes, advise Clearance Delivery if you desire to wait at the gate.
4. Depart the blocks within 10 minutes after receiving enroute clearance when release time is less than 15 minutes. Ready to taxi means ready to immediately depart the blocks/taxi, tow, or pushback. Failure to do so will result in ATC canceling your clearance when other aircraft are requesting the same altitude/route and are ready to taxi.
5. Enroute clearances are based on accurate “10 minutes to taxi” declarations. Those flights that taxi without receiving any enroute clearance will receive no altitude/route priority.

NOTES:
1. Compliance will ensure an orderly sequence of altitude/route assignments during peak traffic movements.
2. Oceanic departures are sequenced primarily with Honolulu, Maui, and Hilo traffic.

LIHUE AIRPORT

Gatehold Procedures

THE FOLLOWING GATEHOLD PROCEDURES ARE ESTABLISHED FOR OVERSEAS TURBOJET DEPARTURES FROM LIHUE AIRPORT:

1. Advise clearance delivery: “Identification, 10 minutes to taxi, destination, requested flight level.”
2. The statement, “10 minutes to taxi” means that you will depart the blocks, taxi, tow, or pushback within 10 minutes after receiving enroute ATC clearance.
3. When ATC specifies a release (takeoff) time of more than 15 minutes for your requested altitude/route, alternatives with no or less delay will be offered, if available. If your choice involves a release time of more than 15 minutes, advise Clearance Delivery if you desire to wait at the gate.
4. Depart the blocks within 10 minutes after receiving enroute clearance when release time is less than 15 minutes. Ready to taxi means ready to immediately depart the blocks/taxi, tow, or pushback. Failure to do so will result in ATC canceling your clearance when other aircraft are requesting the same altitude/route and are ready to taxi.
5. Enroute clearances are based on accurate “10 minutes to taxi” declarations. Those flights that taxi without receiving any enroute clearance will receive no altitude/route priority.

NOTES:
1. Compliance will ensure an orderly sequence of altitude/route assignments during peak traffic movements.
2. Oceanic departures are sequenced with Honolulu, Maui, Hilo, and Keahole traffic.

Informal Runway Use Program

The area directly south of Lihue Airport and west of Carters Point has been designated as a noise sensitive area. The opening of Rwys 17–35 has given us the opportunity to significantly reduce aircraft noise in the vicinity of schools and homes. This program is the result of the cooperative efforts of state, local and federal government and is designed in accordance with the U.S. Department of Transportation Aviation Noise Abatement Policy.

A. GENERAL

Unless runway closures, weather, traffic conditions, aircraft emergencies, actual air defense missions, or operational necessity requires, aircraft will be assigned runways and routings as described in this section. Pilots are requested to adhere to these procedures during all hours, including 2100 to 0700 local.

B. ITINERANT DEPARTURES

All jet and multi–engine propeller aircraft should depart on Rwys 03, 17, or 35. Aircraft to initiate turns seaward as soon as possible following takeoff.

C. ITINERANT ARRIVALS

All jet and multi–engine propeller aircraft should land on Rwys 35, 21, or 17. All approaches should occur from a seaward direction.

D. LOCAL OPERATIONS

(Touch–and–Go and Low Approach) Preferred runways for local operations of jet and multi–engine propeller aircraft are Rwys 17–35. Downwind leg for Rwys 17–35 should be at least 1 mile east of the coastline.

E. TOWER ADVISORY

When the runway specified in these procedures is other than the runway most nearly aligned with the wind, controllers shall preface their instructions with the phrase “For Noise Abatement”. If in the interest of safety a runway different from that specified is preferred the pilot is expected to advise Lihue Tower accordingly. Lihue Tower will honor such requests and advise the pilot that the runway requested is noise sensitive.

HILO INTERNATIONAL AIRPORT

Gatehold Procedures

THE FOLLOWING GATEHOLD PROCEDURES ARE ESTABLISHED FOR OVERSEAS TURBOJET DEPARTURES FROM HILO INTERNATIONAL AIRPORT:

1. Advise clearance delivery: “Identification, 10 minutes to taxi, destination, requested flight level.”
2. The statement “10 minutes to taxi” means that you will depart the blocks, taxi, tow or pushback within 10 minutes after receiving enroute ATC clearance.
3. When ATC specifies a release (takeoff) time of more than 15 minutes for your requested altitude/route, alternatives with no or less delay will be offered, if available. If your choice involves a release time of more than 15 minutes, advise Clearance Delivery if you desire to wait at the gate.
4. Depart the blocks within 10 minutes after receiving enroute clearance when release time is less than 15 minutes. Ready to taxi means ready to immediately depart the blocks/taxi, tow, or pushback. Failure to do so will result in ATC canceling your clearance when other aircraft are requesting the same altitude/route and are ready to taxi.
5. Enroute clearances are based on accurate “10 minute to taxi” declarations. Those flights that taxi without receiving enroute clearance will receive no altitude/route priority.

PAC, 8 SEP 2022 to 3 NOV 2022
NOTES: 1. Compliance will ensure an orderly sequence of altitude/route assignments during peak traffic movements.
2. Oceanic departures are sequenced primarily with Honolulu, Maui, and Keahole traffic.

Preferred Departure Routing

Hilo departures planning U.S. Mainland destinations via the Central East Pacific (CEP)–Hawaii to U.S. Mainland will be cleared as follows:

- R578 VIA THE ITO 345 RADIAL 39 MILE DME FIX AND THE UPP 066 RADIAL TO FITES.
- R577 VIA THE ITO 345 RADIAL 55 MILE DME FIX AND THE UPP 048 RADIAL TO EBBER.
- R465 VIA THE ITO 345 RADIAL 158 MILE DME FIX AND THE OGG 027 RADIAL TO CLUTS.
- R463 AND NORTH VIA V25 ARROW DIRECT APACK.

Flight plan format for these routes is as follows:

- ITO345039 FITES R578
- ITO345055 EBBER R577
- ITO345158 CLUTS R465

Your cooperation in filing flight plans in accordance with the above data will be appreciated.

HAZARDS, CAUTIONS, AND WARNINGS

HAWAII – POHAKULOA TRAINING AREA: Extensive military aircraft training in and near R3103 at speeds of 250 knots. All pilots flying over the island of Hawaii within 10 NM of R3103 (SFC to 30,000 feet) should be alert for high speed maneuvering aircraft.

HAWAII – TRAFFIC PATTERN VOLCANIC ERUPTION AREA: During eruptions in the Hawaii Volcanos Parks area, left hand elliptical traffic patterns will be established up wind of the eruption area for all aircraft. Minimum altitude 2000 feet above the terrain. Remain clear of smoke. Pilots are requested to maintain an alert listening watch on 122.9 MHz and announce aircraft position, direction of flight, altitude and intentions.

HAWAII: Caution advised all airports on Kauai, Oahu, Molokai, Lanai and Maui. Migratory bird activity surface to 1500 feet within a 5 NM radius of the airports from August–May.

HAWAII – TOUR AIRCRAFT: High volume tour aircraft operating over Hawaii. For traffic information, monitor 127.05 NW of ITO VOR 215 radial, monitor 122.85 SE of ITO VOR 215 radial.

KAUAI – NAVIGATIONAL WARNING: Electromagnetic radiation will continuously exist within a 2500 foot radius and 2500 feet above unified S band antenna located at N22º06.81´/W159º39.83´ near Kokee NASA Telemetry Station, Kauai. Helicopters and slow speed aircraft flying within the airspace will be exposed to direct radiation which may produce harmful effects to personnel and equipment. Radiation cannot be seen and must be presumed by all pilots to continuously exist.

KAUAI – PORT ALLEN AIRPORT: Warning – Exercise extreme caution in the vicinity of Port Allen due to high volume of Tour Rotorcraft and Fixed Wing, Glider, and Military Operations.

KAUAI – TOUR AIRCRAFT: High volume tour aircraft operating over Kauai. Monitor 127.05 for traffic information.

LANAI – LANAI AIRPORT APRON AREA: Apron use is as follows: Light acft transient parking in marked tie downs NE section of apron. Helicopters park on far NE corner of apron. Airline operations on apron area fronting terminal. Air Cargo acft operations on apron by cargo bldg SW of ARFF station; do not block access to SW apron extension. Jet/heavy acft transient parking on SW apron extension. HAZARDOUS MATERIALS handling far SE corner of apron.

LANAI – TOUR AIRCRAFT: High volume tour aircraft operating over Lanai. Monitor 122.9 for traffic information.

MAUI – KAHOOLawe ISLAND: Flying below the altitude of 300 feet or landing on the island of Kahoolawe, Hawaii is inherently dangerous. Live unexploded munitions are on the surface of the island. Rotor and prop wash may disturb these items, resulting in a detonation. Anyone desiring to land on Kahoolawe Island must contact the Kahoolawe Island Reserve Commission at (808) 243–5029 or 243–5022.

MAUI – KAHULUI AIRPORT/HELIPORT: The area east of the approach end of Rwy 02 has been designated as a helicopter operating area. No fixed wing operations approved except via PPR. Contact arpt manager 808–872–3880.

MAUI – KAHULUI AIRPORT RAMP AREA: Yellow segmented and solid lines painted on the apron area fronting the passenger terminal represents the line of demarcation between the authority of the FAA and the State. The FAA is responsible for the control and direction of all ground traffic from the solid yellow line outward toward the field. That area is considered to be an active operating area. Aircraft, vehicles, and/or ground equipment entering this area must have prior clearance from the tower. The area lying between the line and the terminal building falls under the jurisdiction of the State. The actt pilot and ground vehicle operator crossing from the taxiway is responsible for avoiding collisions, accidents, and using safe operating procedures. Ramp area East of Rwy 02–20 falls under the jurisdiction of the State. The FAA is not responsible for control or direction of ground traffic in that area. Yellow demarcation lines cross east ramp taxiway entrances. Acft with wingspan between 95´ and 112´ taxi E ramp only between Twy E and 600’ north Twy F; acft with wingspan greater than 112´ may not use E ramp taxi lane. East Ramp: parking limited to MTOW 155,000 lb.; parking area north of ARFF limited to acft wingspan less than 96´; parking between 600’ north Twy F and Twy E limited to acft wingspan less than 112´.
MAUI – HALEAKALA CONTROLLED FIRING AREA: The Haleakala Controlled Firing Area is described as follows: From 10,000 feet MSL to unlimited within a circular area with a 1 NM radius from the Mount Haleakala Maui Observatory (located at the 10,000 foot level at N20°42.42’/W156°15.38’) and expanding outward and upward in a conical shape from this 1 NM radius based on an angle from the observatory of 15 degrees above the horizontal. The conical boundary leaves the 1 NM radius at 10,000 feet MSL and passes through 20,000 feet MSL at the 7.22NM radius and through 42,000 feet at the 20.90 NM radius. Pulsed Ruby Laser operations potentially hazardous to eyesight will be conducted within this area intermittently for 5 to 30 minute periods generally at night and advertised by NOTAM. Laser operations are predicted on the non-interference with IFR operations through coordination with the Honolulu Control Facility. Pilots of aircraft flying VFR should avoid the controlled firing area during its advertised time of use. As a precautionary measure however Laser operations will be suspended if an aircraft penetrates the area of concern. The status of the controlled firing area can be obtained by contacting the controlling facility.

MAUI – KAHOOLawe CONTROLLED FIRING AREA: The Kahoolawe Hawaii Controlled Firing Area is described as follows: From SFC to and including 5000’ MSL within that area bounded by N20°37’30”N/W156°32´48”, to N20°34´48”W156°30´24”, to N20°28´56”W156°30´24”, to N20°28´06”W156°41´48”, to N20°20´30”W156°44´12”, to N20°33´32”W156°44´30”, to N20°37´30”W156°56´24”, thence to point of beginning. The CFA includes the entire island of Kahoolawe.

Ordnance disposal/demolition work potentially hazardous to aircraft shall be conducted by NOTAM during daylight hours only. The controlling agency is FAA Honolulu Control Facility. The status of the CFA can be obtained by contacting the controlling facility.

MAUI – PARASAILING AREA: Parasailing off-shore Lahaina (OGG VORTAC 250R/014 DME) 1000’ below, sunrise to sunset.

MAUI – AEROBATIC OPERATIONS: 1 NM radius (OGG VORTAC 175R/011 DME) from 0315–0415Z Sundays 1500´ and below.

MAUI – ULTRALIGHT OPERATIONS: Extensive ultralight operations from atop Mt. Haleakala to Kala Park (OGG VORTAC 175R/011DME). Unpowered ultralights remain over land. It is recommended that aircraft arriving from the south remain offshore, west of the OGG 175R until 11 DME before turning inbound to Kahului airport.

MAUI – TOUR AIRCRAFT: High volume tour aircraft operating over Maui. Monitor 120.65 for traffic information.

MAUI – VFR AIRCRAFT LANDING KAHALUU AIRPORT INBOUND FROM THE NW: VFR aircraft landing Kahului Airport inbound from the NW should contact Honolulu Control Facility (“HCF Approach”) on 120.2 at least 5 miles NW of Nakaale Point for radar identification and sequencing to the airport.

MOLOKAI – TOUR AIRCRAFT: High volume tour aircraft operating over Molokai. Monitor 121.95 for traffic information.

OAHU – HONOLULU (DANIEL K INOUYE INTL) AIRPORT – RAMP AREA: Broken yellow lines, ramps and taxiways indicate the edge of full strength bearing pavement. Pilots are cautioned to avoid taxing main gear over stabilized taxiway and apron shoulders. Shoulder pavement is stabilized only and not load bearing. Exercise care in following taxiway centerlines at all times especially on turns and at intersections.

Non movement area boundary lines painted on the apron area fronting the terminal complex represents a line of demarcation between the authority of the FAA and the airport operator (State). The FAA is responsible for the control and directing of all ground traffic from the non movement area boundary line outward toward the field. This area is considered an air operation area (AOA). Aircraft, vehicles and/or ground equipment entering this area must have proper clearance under the jurisdiction of the airport operator (State). The FAA is responsible for the shoulder pavement is stabilized only and not load bearing. Exercise care in following taxiway centerlines at all times especially on turns and at intersections.

OAHU – KANEOHE BAY MCAS – HIGH PERFORMANCE AIRCRAFT: Available Cat A acft only; fly downwind over dep ends Rwys 4. All other acft Rwy 11 dep only, Rwy 29 arr only.

OAHU – KANEOHE BAY MCAS – PROXIMITY TO HONOLULU (DANIEL K INOUYE INTL) AIRPORT: Pilots of aircraft flying VFR are requested to avoid the high performance area described below at all times.

OAHU – KALAELOA (JOHN RODGERS FLD) AIRPORT – PROXIMITY TO HONOLULU (DANIEL K INOUYE INTL) AIRPORT: All pilots are reminded of the proximity of Honolulu (Daniel K Inouye Intl) Airport to Kalaeloa (John Rodgers Fld). Exercise caution when approaching Honolulu (Daniel K Inouye Intl) Airport as both fields have parallel Runways 04. Several landings have been made at Kalaeloa (John Rodgers Fld) by pilots mistaking it for Honolulu (Daniel K Inouye Intl) Airport. Minimum IFR altitude for aircraft overflying Kalaeloa (John Rodgers Fld) is 2200 feet.

OAHU – KANEOHE BAY MACAS – HIGH PERFORMANCE AIRCRAFT: Kaneohe Bay MCAS advises high performance aircraft will make maximum performance VFR climbs from takeoff Rwys 04/05 at various times following a warning broadcast on Kanehoe Tower and Approach Control frequencies. Request all aircraft contact Kanehoe Tower prior to transiting CLASS D airspace northeast of Rwys 04/05.

OAHU – KALAELOA AIRPORT NOISE ABATEMENT: Avoid overflight residential areas and schools north and east of arpt. Rwys 11/29 available Cat A only; fly downwind over dep ends Rwys 4. All other acft Rwy 11 dep only, Rw by 29 arr only.

OAHU – KANOEY BAY MCAS – PERFORMANCE AIRCRAFT: Kaneohe Bay MCAS advises high performance aircraft will make maximum performance VFR climbs from takeoff Rwys 04/05 at various times following a warning broadcast on Kanehoe Tower and Approach Control frequencies. Request all aircraft contact Kanehoe Tower prior to transiting CLASS D airspace northeast of Rwys 04/05.

OAHU – KALAELOA (JOHN RODGERS FLD): Tanker vessels with mast height up to 170 feet intermittently operating 2 NM South of approach end Rw 04.

OAHU – KALAELOA (JOHN RODGERS FLD) AIRPORT – PROXIMITY TO HONOLULU (DANIEL K INOUYE INTL) AIRPORT: All pilots are reminded of the proximity of Honolulu (Daniel K Inouye Intl) Airport to Kalaeloa (John Rodgers Fld). Departing aircraft must complete assigned departure heading within two nautical miles from the departure end of the runway. Advise Tower if unable to comply.

OAHU – GLIDER OPERATIONS: Caution – Gliders operating over central Oahu, 20 NM Radius of the location of the now-decommissioned Wheeler (HHI) NDB (21°28.67’N 158°02.03’W excluding HNL TCA), surface to 22,000 feet during mountain wave conditions. Occasional higher operations in unusually strong conditions. Gliders aren't normally transponder equipped and aren't visible on ATC radar.

OAHU – HAZARD AREAS: (1) Pilots are cautioned to avoid, or maintain a minimum of 500 feet AGL over the following ammunition storage areas due to significant threat to life and property posed by possible forced landing or other mishap.

<table>
<thead>
<tr>
<th>AREA</th>
<th>DIMENSIONS</th>
<th>LOCATION FROM HNL VORTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAD Waikiki</td>
<td>1.5 NM Radius</td>
<td>353 radial at 5.2 DME</td>
</tr>
<tr>
<td>NAD Lualualei</td>
<td>2.5 NM Radius</td>
<td>316 radial at 9.7 DME</td>
</tr>
</tbody>
</table>

(2) All pilots are cautioned to avoid Kaena Point land mass within 1½NM (9,120 feet). Potential personnel and electro-explosive device hazards exist due to high power radio frequency transmitters.

PAC, 8 SEP 2022 to 3 NOV 2022
OAHU – HANG GLIDING: Hang gliding operations will be conducted from Makapuu Point 3 miles west along ridge to Waimanalo Beach from 1800 to 0500Z daily, 2000 feet and below. Exercise extreme caution when transiting the area.

OAHU – ULTRALIGHT OPERATIONS: Extensive ultralight operations conducted between Makapuu Point and Manana (Rabbit Island).

OAHU – TOUR AIRCRAFT: High volume tour aircraft operating over Oahu. Monitor 122.85 for traffic information.

OAHU – EARTH TRACKING STATION: Effective immediately and UFN all pilots are requested to avoid overflights below 1000 feet AGL of Com Earth Tracking Station located at HNL300023 DME fix at all times.

OAHU – RIFLE/PISTOL RANGE: Military rifle/pistol range located on west side of Pearl Harbor channel entrance between Ewa Beach and Keahi Point (HNL264R 3.0 DME) (N21º18.81´/W157º58.84´) active Monday through Friday between 0700 to 1700 HST. Danger area from the shoreline extends one nautical mile southeast, 4500 feet wide, from the surface to 200 feet. All aircraft inbound to HNL Rwys 4R/L and 8R/L, remain above 200 feet until east of this area.

OAHU – NAVIGATIONAL WARNING: Electromagnetic radiation will continuously exist within a 2800 foot radius and 2800 feet above all antenna systems along a three mile stretch of mountain ridge between N21º33.81´/W158º13.83´ and N21º33.81´/W158º15.83´ as part of the Kaena Point Satellite Tracking Station, Oahu, Hawaii. Helicopters and slow speed aircraft, including hang gliders, flying within the above airspace will be exposed to direct radiation which may produce harmful effects to personnel and equipment. Radiation is not visually apparent and must be presumed by all pilots to continuously exist.

OAHU – LIGHTS-OUT MILITARY TRAINING: Extensive military rotary wing traffic in and near Alert Area A–311. Unlighted military rotary wing training conducted within boundaries of A–311 from 1 hour after sunset through 1 hour before sunrise, surface to 500 feet AGL.

OAHU – AIRBORNE HAZARD: Fireworks Displays will be conducted every Friday between 7:00 pm and 9:00 pm, for three minutes at Hilton Hawaiian Village (HNL VORTAC 096R/5NM), 600 ft and below, 1/2 NM radius. Avoidance Advised.

HELICOPTER PILOTS – KAPALAMA HELIPAD: Additional high tension electrical line installed on West border of helipad. Use Caution.

HAWAII – OIL POLLUTION REPORTS
Pilots observing oil slicks are requested to report them to Flight Service as soon as possible. The report should include the approximate location using prominent landmarks, size of slick, type of vessels observed in vicinity, and other pertinent information.

KIRIBATI

Full details of all aeronautical facilities in the Kiribati, which includes the Line Islands, are promulgated in the New Zealand Aeronautical Information Publication, South Pacific Flight Guide.

TARAWA – BONRIKI AIRFIELD: Operates during daylight hours only. Field is not lighted at night. Tarawa authorities request that pilots arrive before dark.

KIRITIMA TI (CHRISTMAS ISLAND) – CASSIDY INTL: Operates during daylight hours for any flight which has given 48 hours prior notice. Airport not manned unless flights are known to be operating. Fuel is available during daylight hours with prior notice.

Non-scheduled Flight Procedures

1. If an operator intends to carry out a non-scheduled flight in transit across, or make non–traffic stops in the territory of Kiribati, he may do so without the necessity of obtaining prior permission. However, the attention of operators is drawn to the need for prior notification in respect to navigation aids.

2. If an operator intends to perform a non-scheduled flight into Kiribati for the purpose of taking on or discharging passengers, cargo, or mail he shall apply to:
 - Postal Address: Director of Civil Aviation
 P. O. Box 487
 Betio, Tarawa
 Kiribati
 - Telephonic Address: AVIATION, BETIO, Tarawa

3. The application for permission to carry out such operations must include the following information in the same order as shown hereunder:
 A. Name and address of applicant.
 B. Type of aircraft and registration marks.
 C. Date and times of arrival and departure from airfields in Kiribati.
 D. Place or places of embarkation or disembarkation, as the case may be, of passengers and/or freight.
 E. Purpose of flight and number of passengers, and/or nature and amount of freight.
 F. Name, address and business of charterer, if any.

4. Normally the time required for consideration of applications is brief, but applicants should make allowances for communication delays.
FEDERATED STATES OF MICRONESIA
WENO ISLAND–CHUUK INTERNATIONAL AIRPORT

1. Prior permission required for all non–scheduled aircraft from Civil Aviation Directorate, Department of Transportation, Communications and Infrastructure, Division of Civil Aviation, P.O. Box PS 2, Pohnpei, FM 96941–0000; Tel (691) 320–2865; Fax (691) 320–5853; e-mail TransFSM@mail.fm

2. A copy of clearance and schedule must then be submitted to:
 a) Chuuk International Airport, P.O. Box 189, Weno, Chuuk State, FM 96942; Tel–Office (691) 330–5940, SWARS (691) 330–2352; Fax (691) 330–4242; e-mail ChuukAirport@mail.fm. The Chuuk Airport Executive Manager must be notified three (3) days prior for the ETA of the aircraft. A flight plan must be filed 12 hours prior for the ETA, include Pohnpei Intl Airport (PTPN) as an additional address of the Flt Plan.
 b) Immigration Office, P.O. Box 666, Weno, Chuuk State, FM 96942; Tel (691) 330–2355; FAX (691) 330–4135; e-mail CIL@mail.fm
 c) Customs Office, P.O. Box 610, Weno, Chuuk State, FM 96942; Tel (691) 330–4482; FAX (691) 330–5893; e-mail CTAChk@mail.fm
 d) Quarantine Office, Tel (691) 330–3720; FAX (691) 330–3721; e-mail ChuukQuart@mail.fm

3. Transient aircraft must make prior arrangements with Mobil Oil Guam for fuel and also Mobil Oil Micronesia–Chuuk, P.O. Box 130, Weno, Chuuk State, FM 96942, Tel (691) 330–2540; FAX (691) 330–2688.

GUAM CTA/MARIANA ISLANDS

GUAM–APRA HARBOR—OROTE POINT

In the interest of national security, the Commander, Naval Forces Marianas (COMNAVMAR) requests all civil aircraft avoid overflying U.S. Naval ships and military property west of a line between Santa Rita and Piti below 1500 feet.

RADAR SERVICE PROGRAM GUAM TERMINAL AREA

The VFR radar service program in the Guam Terminal Area provides full time radar advisory and sequencing service to VFR aircraft within 25 miles of the Nimitz VORTAC and radar advisory sequencing and separation within the Andersen TRSA and arriving Andersen AFB. Pilots of VFR aircraft arriving airports in Guam Terminal Area should contact Guam Approach Control when 25 NM from the Nimitz VORTAC. All aircraft use 269.0 or 119.8 MHz. Approach control will issue runway, wind and traffic information, and vectors as necessary for proper sequencing with other arriving aircraft at Andersen AFB and Agana airports. When a pilot reports the aircraft he is to follow in sight, he will be advised to follow it. Departing VFR aircraft desiring traffic information should request VFR radar service on initial contact with Andersen Ground Control or Agana Tower, and advise direction of flight. Tower will advise when to contact departure control and frequency. Since this is a voluntary program, the procedures are not to be interpreted as relieving pilots of their responsibilities to see and avoid other traffic operating in basic VFR weather conditions, to maintain appropriate terrain and obstruction clearance, or to remain in weather conditions equal to or better than the minima required by FAR 91.155. Whenever compliance with an assigned route or heading is likely to compromise pilot responsibility respecting terrain and obstruction clearance and weather minima, Guam approach control should be so advised so that the heading may be revised as appropriate.

NOTES:
1. A graphic depiction of the Guam Terminal Area may be found at the end of this section.
2. Information on flying within a TRSA may be located in Section V of this supplement or in the Aeronautical Information Manual.

TINIAN INTL AIRPORT – COMMUNICATION

Airport with UNICOM available from 2000–0930Z. When inbound tune to 123.6 about 15 miles from the airport (if IFR when the controller advises CHANGE TO ADVISORY FREQUENCY APPROVED) and listen for any other aircraft communicating with the UNICOM operator. When about 5 miles from the airport inform the operator of your position, altitude and intentions. When outbound contract the UNICOM operator before taxiing and furnish your position on the airport and intentions. In both cases the UNICOM operator will provide runway, wind and traffic information.

HAZARDS, CAUTIONS, AND WARNINGS

GUAM – SATELLITE TRACKING OPERATIONS: Because of possible interference with satellite tracking operations and to avoid a potentially hazardous radiation field, pilots are advised to avoid the area within 1 NM of the UNZ VORTAC 033R at 12.2 DME at and below 3100 feet.

GUAM – BALLOON RELEASE: National Weather Service Guam Observatory releases twice ascending balloon borne atmospheric sensing instruments at N13º33’/E144º50’ between 1100–1115Z and 2300–2315Z. Instrument equipment consists of 6 foot diameter rubber balloon with string train 100 feet in length containing a red paper parachute and small white plastic radiosonde instrument. Equipment estimated to ascend to altitudes of 10,000 feet within a 5 mile radius by 1130Z and 2330Z. Ascends to 50,000 feet by 1215Z and 0015Z. Ascends to 100,000 feet by 1300Z and 0100Z respectively.
AUCKLAND OCEANIC FIR

1. Altimeter Setting Requirements

1.1. Within the Auckland Oceanic FIR, the vertical position of aircraft shall be maintained by reference to standard pressure value of 1013.2 hPa, except that:
 a. Aircraft shall change to and from the appropriate zone QNH value upon entering and leaving the QNH zones;
 b. Where the aerodrome of destination or departure is not within a QNH zone aircraft shall use the appropriate aerodrome QNH value when at or below 13,000 feet within 100NM from the shoreline of the landmass on which the destination or departure aerodrome is situated.

1.2. Within the New Zealand domestic, Samoa, Tonga and Cook Area QNH Zones, when at or below 13,000 feet aircraft shall maintain vertical position by reference to the appropriate zone QNH, except that aircraft landing and taking off or operation within a control zone shall use the appropriate aerodrome QNH. However, a QFE altimeter setting may be used in accordance with paragraph 1.7.

1.3. The transition layer between the transition altitude of 13,000 feet and the transition level of FL150 provides adequate separation between aircraft observing different pressure values when the QNH is above 980 hPa. However, when the zone QNH is 980 MB or less, the minimum usable flight level above the zone involved shall be FL160.

1.4. The transition layer shall not be used except when ascending or descending. While passing through the transition layer, vertical position shall be expressed in terms of flight levels (1013.2 hPa) when ascending and in terms of altitude (QNH) when descending.

1.5. Pilots departing from an aerodrome where no QNH value is available shall set the aerodrome elevation on the altimeter prior to departure and shall obtain the appropriate altimeter setting as soon as possible and in any case before entering IMC.

1.6. QNH values passed to aircraft will be rounded down to the nearest whole hPa.

1.7. Use of QFE Altimeter Setting

1.7.1. Where suitable equipment is available, a QFE altimeter setting will be provided, on request, for flights operating by visual reference within an aerodrome traffic circuit. Additionally, foreign operators normally using a QFE altimeter setting for instrument approaches will be provided, on request, with a QFE for the aerodrome elevation except for:
 a. An instrument runway, if the runway threshold is 7 feet or more above the aerodrome elevation;
 b. A precision approach runway, in which case the QFE for the relevant threshold elevation will be provided.

1.7.2. QFE values passed to an aircraft will be rounded down to the nearest whole hPa.

2. Enroute Communications

2.1. The Auckland Oceanic Control System (OCS) is fully FANS 1/A compliant. The Logon address is “NZZO”

2.1.1. Auckland Oceanic Control will accept Automatic Dependent Surveillance – Contract (ADS-C) position reports; and Controller Pilot DataLink Communications (CPDLC).

2.1.2. SELCAL checks by CPDLC equipped aircraft are not required when entering NZZO FIR. Aircraft filing a SELCAL code in item 18 of their flight plan will be assumed to have a serviceable SELCAL and to be maintaining a SELCAL watch on the HF primary frequency advised in the appropriate MONITOR instruction passed by the transferring CPDLC authority.

NOTE: There is no requirement for FANS 1/A aircraft entering NZZO FIR to contact Auckland Radio for a SELCAL check.

2.2. Aircraft enroute within the Auckland Oceanic FIR shall maintain a continuous listening watch on the frequency assigned by the Air/Ground control station.

NOTE: The requirement to maintain a continuous listening watch may be met by the use of approved automatic signaling devices such as SELCAL.

2.3. Unless using Datalink and logged onto NZZO, aircraft inbound to Auckland Oceanic FIR shall establish RTF contact with ATC on Auckland Oceanic frequencies at the Auckland boundary. Outbound aircraft shall transfer to route frequency when instructed by ATC.

2.4. Aircraft entering the Samoa, Tonga, Cook or New Zealand domestic sectors, will be instructed when to change from route frequency to the frequency of the appropriate ATC unit. Aircraft leaving these sectors will be instructed by ATC when to change to the route frequency.

3. Enroute Air Navigation Facilities and Service Charges

Airways Corporation, the ATC service provider in the upper airspace of the Auckland Oceanic FIR, levies charges for enroute air navigation services provided to aircraft. Operators of any aircraft for which navigation services are made available in the Auckland Oceanic FIR should be aware that they may be obligated to pay charges for the services provided.

OAKLAND OCEANIC OCA/FIR

CENTRAL EAST PACIFIC (CEP)

1. The Central East Pacific (CEP) is the organized route system between Hawaii and California. Seven ATS routes, R463, R464, R465, R585, R576, R577, R578, and associated transition waypoints are within the CEP. Reduced Vertical Separation Minimum (RVSM) and Required Navigation Performance 10 (RNP–10) are required for aircraft operating within the CEP at FL290 through FL410. Non-approved aircraft can expect FL280 and below or FL430 and above, traffic permitting.

2. ATS Routes R464, R465, R585, R576 and R577 are one-way routes and any odd or even cardinal flight level may be flight planned.

3. Applicable ATC procedures can be found in Order JO 7110.65 and ICAO Document 7030 – PAC/RAC.

RNAV–10 SEPARATION

RNAV 10 is also known as RNP 10 (ICAO DOC 9613 1.2.5.5.1). RNP 10 lateral separation (50 NM) may be applied within the Oakland OCA/FIR between RNP 10 or better approved aircraft. RNP 10 lateral separation is based on the equipment qualifiers filed in the flight plan for the aircraft. Operators shall determine that the appropriate state authority has approved the aircraft and the aircraft will meet the RNP 10 requirements for the filed route of flight and any planned alternate routes. The letter “R” in field 10a (equipment) of the ICAO standard flight plan indicates PBN (Performance Based Navigation). Associated with the “R” in field 10a, the flight plan should also contain PBN/A1 in field 18 of the FPL to indicate RNP 10. This equipment qualifier should be filed provided the aircraft will maintain RNP 10 eligibility for the entire route segment within the Oakland Oceanic FIR. RNP 10 approval is required for all PACOTS and for all aircraft operating within the CEP at FL290 through FL410. Non-approved aircraft can expect FL280 and below or FL430 and above, traffic permitting.
AREA NOTICES

RNP–4 SEPARATION

RNP 4 horizontal separation (30 NM lateral and 30 NM longitudinal) may be applied within the Oakland OCA/FIR between RNP 4 approved aircraft with RCP 240 and RSP 180 approval. Eligibility for RNP 4 horizontal separation is based on the equipment qualifiers filed in the flight plan for the aircraft. Operators shall determine that the appropriate state authority has approved the aircraft and the aircraft will meet the RNP 4, RCP 240 and RSP 180 requirements for the filed route of flight and any planned alternate routes. The flight plan shall be filed with the appropriate codes as detailed in the United States AIP.

RVSM SEPARATION

Reduced Vertical Separation Minimum (RVSM- 1,000 foot vertical separation between RVSM approved aircraft) may be applied within the Oakland OCA/FIR between FL290 and FL410. Aircraft operating within this airspace between FL290 and FL410 require RVSM approval. RVSM vertical separation will be based on the equipment qualifier filed by the aircraft. The operators shall determine that the appropriate state authority has approved the aircraft and the aircraft will meet the RVSM requirements for the filed route of flight and any planned alternate routes. The letter “W” in field 10a (equipment) of the ICAO standard flight plan indicates RVSM approved aircraft.

1. Non-RVSM Equipped Civil Aircraft:

a. Non-RVSM equipped civil aircraft unable to fly to an appropriate destination at or below FL280 and unable to fly at or above FL430 may flight plan at RVSM flight levels in the RVSM stratum provided one of the following conditions exists:
 (1) The aircraft is being initially delivered to the state of registry or operator; or
 (2) The aircraft was formerly RVSM approved but has experienced an equipment failure and is being flown to a maintenance facility for repair in order to meet RVSM requirements and/or obtain approval; or
 (3) The aircraft is being utilized for mercy or humanitarian purposes.

b. The approval for non-RVSM is intended exclusively for the purposes indicated above.

2. Non-RVSM Equipped State Aircraft:

Non-RVSM state aircraft may flight plan at RVSM flight levels without prior coordination. State aircraft should include “STS/Military NON-RVSM” in field 18 of the ICAO standard flight plan.

3. Suspension of RVSM:

ATC will consider suspending RVSM procedures within affected areas of the Oakland OCA/FIR when there are pilot reports of greater than moderate turbulence. Within areas where RVSM procedures are suspended, the vertical separation minimum between all aircraft will be 2000 ft.

CONTROLLER PILOT DATA LINK COMMUNICATIONS (CPDLC)

Oakland ARTCC has full CPDLC capability and normal service in the entire Oakland OCA/FIR for FANS–1/A capable aircraft. The Oakland OCA/FIR log-on address is “KZAK”; the facility is “OAKODYA.”

1. HF Communications Requirement

Prior to entering the Oakland OCA/FIR, contact San Francisco Radio on HF and identify the flight as CPDLC equipped. Provide SELCAL, departure and destination, aircraft registration number and advise whether SATVOICE equipped. Expect to receive primary and secondary HF frequency assignments from San Francisco Radio for the entire route of flight within the Oakland OCA/FIR. Pilots must maintain HF communications capability with San Francisco Radio at all times within the Oakland OCA/FIR.

2. Log-On

a. For aircraft departing from airports along the west coast of North America, Guam and Hawaii, Oakland Oceanic Control requires that data-link aircraft not logon to Oakland oceanic (KZAK) until after leaving 10,000’ MSL. This request is made to eliminate ADS periodic reports for aircraft that are still on the ground which will assist in the transition from the domestic airspace automation environment. Additionally, this should reduce operator cost.

b. Aircraft entering the Oakland OCA/FIR CPDLC service area from non-CPDLC airspace: Log on to CPDLC at least 15 but not more than 45 minutes prior to entering the Oakland OCA/FIR CPDLC service area. Contact San Francisco Radio on HF and inform them you are a CPDLC flight.

c. Aircraft entering the Oakland OCA/FIR CPDLC service area from adjacent CPDLC airspace: Pilots should determine the status of the CPDLC connection. If KZAK is the active center, the pilot shall contact San Francisco Radio on HF, identify the flight as a CPDLC flight. If KZAK is not the active center, the pilot shall, within 5 minutes after the boundary is crossed, terminate the CPDLC connection, then log on to KZAK, contact San Francisco Radio on HF and inform them you are a CPDLC flight.

3. CPDLC Position Report Message Format

Oakland OCA/FIR (KZAK) cannot accept position reports containing latitude and longitude (Lat/Long) in the ARINC 424 format, which is limited to five characters (e.g. 40N50). Position reports in the KZAK CPDLC service area containing Lat/Long waypoints will be accepted in complete latitude and longitude format only. Flights unable to send position reports in complete latitude and longitude format must accomplish position reporting via HF voice communications.

4. Aircraft Over-Flying Honolulu Control Facility (HCF) Airspace

Prior to entering HCF airspace, aircraft will receive an END SERVICE message that will result in termination of CPDLC. Aircraft shall re-log on to CPDLC prior to reentering Oakland OCA/FIR (KZAK) airspace when HCF advises to contact en route communications or San Francisco Radio.

5. Aircraft Entering Guam CERAP Airspace

Contact Guam CERAP 250 miles out on 118.7, squawk 2100.

PAC, 8 SEP 2022 to 3 NOV 2022
1. General Information

a. Geographical Boundary. PACOTS tracks may be established within the Oakland Oceanic, Fukuoka, and Anchorage FIRs.

b. Track Definition Message (TDM). Oakland ARTCC is using the TDM format for PACOTS tracks. Questions regarding published PACOTS tracks should be directed to Oakland ARTCC Traffic Management Unit (TMU), at (510) 745-3771.

c. Number and Designator of PACOTS Tracks

(1) Oakland ARTCC or Fukuoka Air Traffic Management Center (ATMC) may develop more or fewer tracks according to user needs, military activity, significant weather, or other limitations.

(2) ROUTES

<table>
<thead>
<tr>
<th>ROUTES</th>
<th>TRACK DESIGNATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii to Japan</td>
<td>A</td>
</tr>
<tr>
<td>Japan to Hawaii</td>
<td>11</td>
</tr>
<tr>
<td>Japan to Hawaii</td>
<td>12 (optional)</td>
</tr>
<tr>
<td>North American West Coast to Japan</td>
<td>C</td>
</tr>
<tr>
<td>North American West Coast to Japan</td>
<td>D (optional)</td>
</tr>
<tr>
<td>North American West Coast to Japan</td>
<td>E & F</td>
</tr>
<tr>
<td>Japan to North American West Coast</td>
<td>1, 2, & 3</td>
</tr>
<tr>
<td>Japan to North American West Coast</td>
<td>4 (optional)</td>
</tr>
<tr>
<td>Texas to Japan</td>
<td>M</td>
</tr>
<tr>
<td>Japan to Texas</td>
<td>8</td>
</tr>
<tr>
<td>North American West Coast to Asia</td>
<td>H & I (optional)</td>
</tr>
<tr>
<td>North American West Coast to Asia</td>
<td>J & K</td>
</tr>
<tr>
<td>Asia to North American West Coast</td>
<td>14</td>
</tr>
<tr>
<td>Asia to North American West Coast</td>
<td>15 (optional)</td>
</tr>
</tbody>
</table>

d. Usable Flight Levels

(1) All IFR flight levels at or above FL290 except the Westbound North America-Japan PACOTS which also includes FL280 in the Oakland OCA/FIR. The Westbound North America-Japan PACOTS are included in the Track Advisory Program. Certain restrictions may apply for non-PACOTS traffic operating in the opposite direction to the published PACOTS system.

e. Lateral Spacing of Tracks

(1) PACOTS Tracks are established at least 50 NM apart. Tracks are defined using latitude/longitude expressed in whole degrees or named waypoints with the exception of FIR crossing points.

f. Flight Planning

(1) The following flight planning restrictions and rules only apply within the oceanic control areas of the respective FIRs. Furthermore, these restrictions do not affect aircraft filing on ATS routes in the CEP route system or the NOPAC Composite Route System unless individual routes within these systems are specifically identified as unusable in NOTAMs.

(a) Participating Aircraft

1. Aircraft requesting altitudes at or above FL280 may file via route published in the daily NOTAM or track message.

2. Operators may file to leave or join an outer PACOTS track at any reporting point. Aircraft leaving an outer track should file routes that diverge, within 10 degrees of longitude, to at least 50 NM from the nearest PACOTS track. Flight level assignment for aircraft joining an outer track will be based on traffic.

3. Operators must file appropriate SIDs and STARs associated with the departure/arrival airports.

4. Operators must flight plan to avoid active military airspace.

(b) Non-Participating Aircraft. Random routes under the PACOTS at FL270 and below are permitted, unless otherwise prohibited by NOTAM. Higher Altitude may be approved if traffic permits.

g. ATC Procedures

(1) For flight planning and initial clearances, crossing between PACOTS tracks at FL280 and above will not be permitted. Once established on the PACOTS track, changes may be approved as traffic permits.

(2) Aircraft should not expect to climb into the PACOTS traffic unless filed on a route corresponding to a PACOTS track. In this case, climb into the PACOTS will be approved as traffic permits.

(3) The minimum longitudinal separation between aircraft crossing the Fukuoka FIR boundary on the same track at the same flight level will be 10 minutes using Mach Number Technique or applicable ADS-C distance-based separation standard.
h. Position Reporting

(1) Within the Oakland and Anchorage oceanic control areas position reports shall be made using latitude/longitude coordinates or named fixes as specified in the TDM. Position reports shall comprise information on present position, estimated next position, and ensuing position in accordance with ICAO procedures. Rounding off geographical coordinates is prohibited.

2. Eastbound Japan-Hawaii PACOTS

a. Time Frame

(1) Effective daily 1000–2100 UTC for aircraft crossing 160 degrees east longitude between 1200 and 1600 UTC.

b. Notification of Japan-Hawaii PACOTS

(1) Notification of the geographical coordinates of Track 11 and optional Track 12 will be transmitted by TDM and NOTAM at approximately 2200 UTC daily by Fukuoka ATMCC.

c. Flight Planning

(1) Participating eastbound aircraft departing from or traversing Central West Japan and crossing 160 degrees east longitude between 1200 UTC to 1600 UTC should flight plan as described in the daily TDM and NOTAM.

d. User Preferred Routes (UPR)

(1) Aircraft Operators have the option of flight planning a UPR instead of utilizing the Japan-Hawaii PACOTS.

(2) No altitude penalties will be incurred by aircraft flight planning a UPR that conflicts with PACOTS Track 11 or 12.

(3) The details and procedures for flight planning Japan-Hawaii UPRs are detailed in the next section.

3. Westbound Hawaii-Japan PACOTS

a. Time Frame

(1) Effective daily 1900–0800 UTC for aircraft crossing 160 degrees east longitude between 2300 and 0600 UTC.

b. Notification of the Hawaii-Japan PACOTS

(1) Notification of the geographical coordinates of Track A and optional Track B will be transmitted by TDM and NOTAM at approximately 1100 UTC daily by Oakland ARTCC.

c. Flight Planning

(1) Participating westbound aircraft departing Hawaii to Japan and crossing 160 degrees east longitude between 2300 UTC and 0600 UTC should flight plan as described in the daily TDM and NOTAM.

d. User Preferred Routes (UPR)

(1) Aircraft Operators have the option of flight planning a UPR instead of utilizing the Hawaii-Japan PACOTS.

(2) No altitude penalties will be incurred by aircraft flight planning a UPR that conflicts with PACOTS Track A or B.

(3) The details and procedures for flight planning Hawaii-Japan UPRs are detailed in the next section.

4. Eastbound Japan/Asia - North America PACOTS

a. Time Frame

(1) Effective daily from 0700 UTC to 2300 UTC applies to traffic crossing 160 degrees east longitude between 0900 UTC and 1230 UTC.

b. Notification of the Japan-North America PACOTS

(1) Notification of the geographical coordinates of the selected PACOTS tracks will be transmitted by TDM and NOTAM at approximately 2200 UTC daily by Fukuoka ATMCC. Number will designate tracks with the northernmost being referred to as TRACK 1.

c. Flight Planning

(1) Participating aircraft from or over Japan to North America and crossing 160 degrees east longitude between 0900 UTC and 1230 UTC should flight plan as described in the daily TDM and NOTAM.

d. User Preferred Routes (UPR)

(1) Aircraft Operators have the option of flight planning a UPR instead of utilizing the PACOTS Track 1, 3, 14 or 15.

(2) No altitude penalties will be incurred by aircraft flight planning a UPR that conflicts with PACOTS Track 1, 3, 14 or 15.

(3) The details and procedures for flight planning PACOTS Track 1, 3, 14 and 15 UPRs are detailed in the next section.

5. Westbound North America–Japan PACOTS

a. Time Frame

(1) Effective daily from 1900 UTC to 0800 UTC. Required for traffic crossing 160 degrees east longitude between 0230 UTC and 0600 UTC.

b. Notification of Tracks

(1) Notification of selected PACOTS tracks will be transmitted by TDM and NOTAM at approximately 1100 UTC daily by Oakland ARTCC. The number of tracks each day will be determined by the position of the jet stream.

c. Flight Planning
(1) Participating aircraft flying from North America to the Fukuoka FIR and crossing 160 degrees east longitude between 0230 UTC and 0600 UTC should flight plan as described in the daily TDM and NOTAM.

6. **Westbound North American-Asia PACOTS**
 a. Westbound PACOTS tracks serving destinations in Asia are published twice daily.
 b. Time Frame
 (1) Tracks H and I are applicable for traffic crossing 160 degrees east longitude between 0200 UTC and 0600 UTC.
 (2) Tracks J and K are applicable for traffic crossing 160 degrees east longitude between 1500 UTC and 1800 UTC.
 c. Notification of Tracks
 (1) Notification of PACOTS “H” and “I” will be transmitted by TDM and NOTAM at approximately 1100 UTC.
 (2) Notification of PACOTS “J” and “K” will be by TDM and NOTAM at approximately 0000 UTC.
 d. Flight Planning
 (1) Participating aircraft flying between North America and Asia should flight plan as described in the daily TDM and NOTAM.
 e. User Preferred Routes (UPR)
 (1) Aircraft Operators have the option of flight planning a UPR instead of utilizing PACOTS Tracks 1, 3, 11/12, 14/5, A/B, H/I, J or K.
 (2) No altitude penalties will be incurred by aircraft flight planning a UPR that conflicts with the tracks listed in e.(1) above when the appropriate guidelines are followed.

USER PREFERRED ROUTE (UPR) GUIDELINES

1. **Geographical Boundary.** UPRs may be utilized within the specified FIRs as detailed in the Oakland ARTCC website.

2. **UPR General Guidelines:**
 a. The UPR must be planned to avoid military special use airspace when active.
 b. The UPR must utilize a published STAR where appropriate.
 c. Conditions that may not allow the use of UPRs
 (1) Operators will be informed whenever a condition exists that does not allow the use of UPRs within a particular FIR.
 (2) Conditions that may not allow the use of UPRs include large scale military operations and typhoons.
 (3) For further information or questions regarding UPRs, contact the Oakland Oceanic Supervisor at (510) 745-3342.

3. **Specific Guidelines for filing UPRs associated with PACOTS Tracks or between specified City Pairs are listed on the Oakland ARTCC Website:**
 www.faa.gov/about/office_org/headquarters_offices/ato/service_units/air_traffic_services/artcc/oakland/
GUAM AREA PREFERENTIAL ROUTING

1. Due to traffic congestion within the Oakland OCA/FIR north, south and west of the airspace delegated to Guam CERAP (a 250NM radius of 13°32′N/144°55′E) preferred routings have been established. This notice applies to all turbojet aircraft at or above FL280 operating within the Oakland OCA/FIR north, south or west of the Guam CTA. The following are the Guam area preferential routings within the Oakland OCA/FIR. Aircraft operators must ensure that these preferential routes are indicated in Field 15 of the ICAO standard flight plan. The acronym FPRD in the descriptions below means flight plan route to destination.

2. Southbound aircraft en route from the Fukuoka OCA/FIR and terminating within Guam CERAP delegated airspace:
 a. OVER KEITH – KEITH R584 OTTRE FPRD
 b. OVER PADKO – PAKDO G339 RIDLL FPRD
 c. OVER MONPI – MONPI A597 REEDE FPRD MONPI A216 RIDLL FPRD
 d. OVER OMLET – OMLET B586 WINZR FPRD
 e. OVER TEGOD – TEGOD G205 GUYES FPRD TEGOD A337 SNAPP W21 HIRCH FPRD

3. Northbound aircraft originating within Guam CERAP delegated airspace, en route to destinations within the Fukuoka OCA/FIR:
 a. OVER MIKYY – MIKYY R584 KEITH FPRD
 b. OVER NATSS – NATSS G339 PAKDO FPRD
 c. OVER OATSS – OATSS A216 MONPI FPRD
 d. OVER RICHH – RICHH A597 MONPI FPRD
 e. OVER TOESS – TOESS B586 OMLET FPRD
 f. OVER TERY – TERY G205 TEGOD FPRD
 g. OVER TEEDE – TEEDE A337 TEGOD FPRD

NOTE 1: Aircraft within the Oakland OCA/FIR and transiting Guam CERAP delegated airspace must flight plan to enter/exit Guam Center airspace on an appropriate ATS route(s) or other established compulsory reporting points (e.g., FATUM or JOBSS).

NOTE 2: With the exception of aircraft flight planned via Oceania UPR procedures, operators flight planning at or above FL310 with filed routes other than those described above should expect to be re-routed to the preferential route. Requests for alternate routes will be considered on a real-time basis as traffic conditions permit. However, aircraft should flight plan for and be prepared to fly the entire preferential route. Aircraft operating EAST of 150E longitude will not be affected.

OAKLAND OCA ISLAND AIRPORTS

1. Clearances
 a. When requesting an IFR clearance while on the ground, make every effort to communicate through San Francisco Radio or CPDLC. If unable to contact San Francisco Radio, a request for an IFR clearance can be made via direct communications with the sector controller via telephone.

 b. If unable to receive a clearance through any of the above means and you elect to depart VFR in accordance with ICAO Annex 2 and Document 7030, continue efforts to establish communication and obtain a clearance as soon as possible.

 NOTE: Rules pertaining to VFR flight may be found within Section III—General Notices of this supplement.

2. Hazards
 a. Kwajalein Atoll–Dyess AAF: Electromagnetic radiation will exist 24 hours daily within 2.17 NM radius of Dyess AAF from the surface to 13,000 feet. Aircraft within this airspace may be exposed to direct radiation, which may be harmful to personnel and equipment.

 b. Kwajalein Atoll-Bucholz AAF: Electronic radiation may exist 24 hours daily within 5nm radius of Bucholz AAF from surface to 30,000 feet.

 c. Kwajalein Atoll–180 NM Radius: Hazardous military activity will be conducted which affect aircraft at all altitudes and flight levels within a 180 NM radius of 0843.3N/16743.8E until further notice. All nonparticipating VFR pilots are advised to remain well clear of the area. IFR flights under ATC jurisdiction may expect possible reroute to and from Bucholz Airport. For further information, contact Kwajalein Range Safety Officer at 805–355–1516.
GUAM TERMINAL AREA

Heavily travelled routes for high performance aircraft arriving and departing Guam Intl and Andersen AFB should be avoided by light aircraft pilots flying VFR. The largest concentration of aircraft occurs within a radius of approximately 15 miles of the airports and at an altitude up to and including 4000 feet.

In addition to the above there are two areas of activity to be avoided, both outside the Agana Class D airspace. The first – ALFA – is a light aircraft low altitude training area within a 6 mile radius of Inarajan Bay. Aircraft training in this area should operate at or below 1800 feet and should monitor Guam Approach Control on freq 119.8. The second area – BRAVO – is a light aircraft high altitude training area for use up to 10,000 feet. This area is within a 5 mile radius of Cocos Island. Aircraft in this area should also monitor Guam Approach Control on 119.8.
CLASS C AIRSPACE
KAHULUI AIRPORT
FIELD ELEV 53' MSL

CONTACT HCF
APPROACH CONTROL
120.2
322.4

MOLOKAI

MOLOKINI ISLAND

Golf Course

Mill

KAHULUI

MAUI

MAKEN

Glowalu

McGregor Point

Keiki

Makena

Public law prohibits flight of VFR helicopters or Fixed-wing aircraft below 9500 feet MSL over the following areas in Haleakala National Park: Haleakala Crater, Crater Cabins, the Scientific Research, Halemau Trail, Kaupo Gap Trail or any designated tourist viewpoint.

HALEAKALA NATIONAL PARK

LEGEND
VFR CHECK POINTS
FLOOR IN HUNDREDS OF FEET MSL
CEILING IN HUNDREDS OF FEET MSL

41
20

CLASS C AIRSPACE PROCEDURES

VFR AIRCRAFT PROPOSING TO ENTER KAHULUI AIRPORT CLASS C AIRSPACE ARE REQUIRED TO CONTACT ATC PRIOR TO ENTRY. INITIAL CONTACT: REFER TO CHARTED VFR CHECK POINTS OR 10 DME FROM THE OGG VORTAC. INITIAL CALLS IN CLOSE PROXIMITY TO THE AIRSPACE BOUNDARY MAY RECEIVE INSTRUCTIONS TO "REMAIN CLEAR OF CHARLIE AIRSPACE AND STANDBY." INITIAL CALLS FROM THE MORE DISTANT CHECK POINTS ARE PREFERRED.

KAHULUI, MAUI

Shown are the most heavily traveled routes for high performance aircraft arriving and departing Kahului Airport, Maui. Light plane pilots flying VFR in these areas should maintain an alert lookout and monitor HCF Approach Control frequency. Aircraft transiting north of the Kahului Airport in VFR conditions are requested to remain at least 8 NM north of the airport at or below 4500 ft, if westbound, 3500 ft. if eastbound, or following the shoreline at or below 2500 ft. and be responsive to routing changes issued by HCF Approach Control or Maui Tower. The area depicted as "ALFA" is a light aircraft local training area. Area is outside Kahului Airport Class C airspace. Aircraft training in area normally operate at or below 3000 ft. and monitor HCF Approach Control.
NOISE SENSITIVE AREAS AND RECOMMENDED FLIGHT PATHS (VFR)
KAHULUI AIRPORT

Note: Aircraft more than 12,500 lbs. inbound from the south or flying over land from the northwest desiring runway 5, must overfly the airport and enter left traffic for runway 5.
INFORMAL RUNWAY USE PROGRAM—KAHULUI ARPT, MAUI

Aircraft noise complaints from Spreckelsville Beach area located adjacent to Kahului Airport have become a matter of serious concern. To alleviate the situation, noise abatement departure runways and flight patterns have been developed. All pilots are urged to follow these procedures to the maximum extent possible consistent with operational and safety requirements. Runway 2 is designated as the noise abatement departure runway for both large and jet powered aircraft. Departure flight pattern runway 2: Climb straight ahead until one mile clear of shoreline before commencing turns. If takeoff on runway 5 is necessary, both large and jet powered aircraft are requested to:

- If east or westbound, turn left as soon as possible and proceed one mile clear of shoreline; if southbound, turn right as soon as possible if traffic permits, otherwise turn left.

NOISE ABATEMENT ROUTE FOR AIRCRAFT DEPARTING RUNWAYS 2 AND 5 KAHULUI AIRPORT, MAUI.
NOTE: RUNWAY 2 DESIGNATED NOISE ABATEMENT DEPARTURE RUNWAY FOR LARGE AIRCRAFT AND JET POWERED AIRCRAFT.

RUNWAY 2
CLIMB STRAIGHT AHEAD UNTIL ONE MILE CLEAR OF SHORELINE.

HOUSES
Spreckelsville
Golf Course
AIRCRAFT REMAINING IN RIGHT TRAFFIC PATTERN RUNWAY 2 OR LEFT TRAFFIC PATTERN RUNWAY 20, ARE REQUESTED TO CROSS SHORELINE ON DOWNWIND OVER EAST END OF GOLF COURSE TO AVOID FLIGHT OVER RESIDENTIAL AREA.

RUNWAY 5
EAST AND WEST DEPARTURES, TURN LEFT SOON AS POSSIBLE. PROCEED ONE MILE CLEAR OF SHORELINE. SOUTH DEPARTURES, TURN RIGHT SOON AS POSSIBLE.
KONA INTERNATIONAL AT KEAHOLE AIRPORT, HAWAII

Depicted on this chart are the most heavily traveled routes for high performance aircraft arriving and departing Kona Intl At Keahole Airport, Kona, Hawaii.

General Aviation pilots flying VFR should be extra alert in these areas. Contact Kona Tower on frequency 120.3 for traffic advisories.
PREFERRED VFR ROUTING
LIHUE AIRPORT, LIHUE, KAUAI

LEGEND

- PREFERRED VFR ARRIVAL ROUTES
- PREFERRED VFR DEPARTURE ROUTES
- IFR ARRIVAL/DEPARTURE ROUTES
- REQUEST CENTER ADVISORIES PRIOR TO TRANSITING AREA 126.5

AIRCRAFT INBOUND TO LIHUE FROM THE EAST CONTACT HONOLULU CENTER 126.5 BY MID-CHANNEL.

VFR AIRCRAFT DEPARTING LIHUE AIRPORT VIA RUNWAY 3/35 EASTBOUND, FLY OUTBOUND ON OR NORTH OF LIH 105 RADIAL UNTIL 25 MILES EAST.

PAC, 8 SEP 2022 to 3 NOV 2022
1. VFR arriving or departing aircraft must maintain indicated altitudes in vicinity of Bucholz Army Airfield. A high intensity radiated field can exist in vicinity of Bucholz and the possibility of interference exists if procedure is not followed.

2. Avoid overflight of indicated area at NW corner of Kwajalein.
PREFERRED VFR ROUTING AT SAIPAN AND WEST TINIAN AIRPORTS
Tradewind Condition
(Northeast Winds, Rwy 07, Rwy 08 In Use)

1. VFR turbo jet aircraft arriving Saipan from the southwest should proceed northbound along the west coast of Tinian. VFR turbo jets from the north-northwest should proceed southbound about 10 miles west of Saipan. They should intercept the I-GSN localizer at 10 DME and proceed inbound on the localizer maintaining at or above 2300’ above mean sea level until passing KORDY (localizer/7 DME).

2. VFR twin engine aircraft arriving at Saipan from Tinian, Rota/Guam should proceed to Unai Masalok and direct to Puntan Opyan.

3. VFR single engine aircraft arriving Saipan from Tinian should turn left after takeoff and proceed northbound via BROADWAY to the traffic circle, then northeast to Asiga Point, then across Saipan channel for straight-in to Rwy 07.

4. VFR twin engine aircraft from Saipan should make right traffic to Nafran Point, then southwest bound to Puntan Masalok, then enter left traffic for Rwy 08 at West Tinian.

5. VFR single engine aircraft from Saipan should make left traffic downwind to Puntan Aitingan, across Saipan channel to Puntan Tuhong (north tip of Tinian), direct to 8th Avenue traffic circle, thence via 8th Avenue to enter left traffic for Rwy 08 at West Tinian.
PREFERRED VFR ROUTING AT SAIPAN AND WEST TINIAN AIRPORTS

Southwest Wind Condition
(Rwy 25 and Rwy 26 In Use)

1. VFR single engine aircraft from Saipan Rwy 25 to West Tinian, direct across Saipan Channel to Broadway Traffic Circle, via BROADWAY to enter a right base leg for Rwy 26.

2. VFR twin engine aircraft from Saipan Rwy 25 left turn direct Unai Masalok, make straight-in to Rwy 26 at West Tinian.

3. VFR twin and single engine aircraft from West Tinian, Rwy 26 to Saipan, right turn follow 8th Avenue to Traffic Circle, direct to Puntan Tahgong across Saipan Channel to Agingan Point, enter right downwind for Rwy 25 at Saipan.
HILO INTL, HILO

Depicted on this chart are the most heavily traveled routes for high performance aircraft arriving and departing Hilo Intl, Hilo, Hawaii.

General aviation pilots flying VFR should be extra alert in these areas. Contact Hilo Approach Control on frequency 119.7 for traffic advisories.
NOISE SENSITIVE AREAS AND RECOMMENDED FLIGHT PATHS (VFR)
HILO INTL
HILO, HAWAII

LARGE AIRCRAFT PATTERN ALTITUDE 1500' MSL
SMALL AIRCRAFT PATTERN ALTITUDE 800' MSL
Glider Operations: Gliders are normally air-towed and routinely depart the traffic pattern to the South. (Right turn after takeoff Rwy 08, left turn after takeoff Rwy 26.) Gliders normally fly the ridge line to the south of the airport, within 5 NM. Most gliders are not radio equipped. The powered aircraft towing the gliders have radios and routinely use the glider traffic pattern, entering the traffic pattern from the South.

Sky Dive Operations: Extensive parachute operations occur daily at 16,000’ and below. Parachutists normally exit the aircraft upwind of the airport and during strong winds may exit as far as 3 NM from the drop zone. Parachutes are usually opened between 2,000’ and 4,500’ altitude, and then flow to the drop zone entering an abbreviated left traffic pattern (Rwy 08) or right traffic pattern (Rwy 26). During light and no wind conditions, the parachutes may open directly above the airport and adjacent beach area.

TRAFFIC PATTERN

SMALL AIRCRAFT 800’ MSL
SAILPLANES AND TOWPLANES 700’ MSL
ALL TRAFFIC TO NORTH OF RUNWAY
MAXIMUM AUTHORIZED LANDING WEIGHT:
S-40, D-152, DT-180.

Left turn after Rwy 08 takeoff, avoid parachute drop zone.
Right turn after Rwy 26 takeoff, avoid parachute drop zone.

1500’ MSL & ABOVE
AEROBATIC BOX
10000’
WAIALUA
PARACHUTE DROP ZONE
PARACHUTE OPENING & DESCENT AREA
NOISE SENSITIVE AREA
PACIFIC OCEAN
SAILPLANES
ACFT PARKING & HANGERS
FALSETTO HIGHWAY

PAC, 8 SEP 2022 to 3 NOV 2022
AREA NOTICES

ARRIVAL/DEPARTURE GRAPHICS

WHEELER TWR 126.3/235.625

<table>
<thead>
<tr>
<th>TRAFFIC PATTERN</th>
<th>DOWN WIND</th>
<th>BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIXED WING</td>
<td>2000 MSL</td>
<td>1300 MSL</td>
</tr>
<tr>
<td>ROTARY WING</td>
<td>1500 MSL</td>
<td>1300 MSL</td>
</tr>
<tr>
<td>NVG</td>
<td>1500 MSL</td>
<td>1300 MSL</td>
</tr>
</tbody>
</table>

DILLINGHAM

CTAF 123.0
MILITARY AIR TO AIR 233.3

HALEIWA

THOMPSON CORNER

PINEAPPLE

2000D/NG
2500N*

R3110A,B,C

Contact USASC Range Control FM 38.30

R3109A,B,C

4140

DOLE

2000D/NG
2500N

MOTORPOOL

WHEELER AAF

KOLEKOLE

KOLEKOLE

2200, N, NG

LEGEND

- Preferred Routing Civil/Military Transition
- Traffic Pattern (South Traffic Only)
- Arrival/Departure Routes Military Helicopter
- Mandatory Reporting Points
- Inbound Altitude Military Helicopter
- Outbound Altitude Military Helicopter
- Weather Permitting
- Day Altitude Military Helicopter
- Night Altitude Military Helicopter
- NVG/NVS Altitude Military Helicopter
- Noise Sensitive Areas

CIVIL AIRCRAFT TRANSITIONS

Contact Tower at HI/H2 Interchange or Harbor View Northbound/Haleiwa Southbound. Expect Altitude Assignment at or above 2500' MSL.

KANIA TOWN

MILANI TOWN

KALUAU

KAHU

1047

2000D,N,NG

1500D,N,NG

1500

HI/H2 INT

A-311

For flight following/advisories aircraft below 500' AGL contact Lightning Radios (P) UHF 239.5 (A) VHF 139.2

CHART NOT TO SCALE

PAC, 8 Sep 2022 to 3 Nov 2022
INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK
ICAO International Phonetic Alphabet/Morse Code

<table>
<thead>
<tr>
<th>Letter</th>
<th>Morse Code</th>
<th>Phonetic</th>
<th>Romanization</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>· –</td>
<td>Alfa</td>
<td>(AL-FAH)</td>
</tr>
<tr>
<td>B</td>
<td>– · · ·</td>
<td>Bravo</td>
<td>(BRAH-VOH)</td>
</tr>
<tr>
<td>C</td>
<td>– – – ·</td>
<td>Charlie</td>
<td>(CHAR-LEE) (or SHAR-LEE)</td>
</tr>
<tr>
<td>D</td>
<td>– · ·</td>
<td>Delta</td>
<td>(DELL-TAH)</td>
</tr>
<tr>
<td>E</td>
<td>·</td>
<td>Echo</td>
<td>(ECK-OH)</td>
</tr>
<tr>
<td>F</td>
<td>· · – ·</td>
<td>Foxtrot</td>
<td>(FOKS-TROT)</td>
</tr>
<tr>
<td>G</td>
<td>· · · ·</td>
<td>Golf</td>
<td>(GOLF)</td>
</tr>
<tr>
<td>H</td>
<td>– · · ·</td>
<td>Hotel</td>
<td>(HOH-TEL)</td>
</tr>
<tr>
<td>I</td>
<td>· ·</td>
<td>India</td>
<td>(IN-DEE-AH)</td>
</tr>
<tr>
<td>J</td>
<td>· – – –</td>
<td>Juliett</td>
<td>(JEW-LEE-ETT)</td>
</tr>
<tr>
<td>K</td>
<td>– – –</td>
<td>Kilo</td>
<td>(KEY-LOH)</td>
</tr>
<tr>
<td>L</td>
<td>– – ·</td>
<td>Lima</td>
<td>(LEE-MAH)</td>
</tr>
<tr>
<td>M</td>
<td>– –</td>
<td>Mike</td>
<td>(MIKE)</td>
</tr>
<tr>
<td>N</td>
<td>– ·</td>
<td>November</td>
<td>(NO-VEM-BER)</td>
</tr>
<tr>
<td>O</td>
<td>– – –</td>
<td>Oscar</td>
<td>(OSS-CAH)</td>
</tr>
<tr>
<td>P</td>
<td>· – – ·</td>
<td>Papa</td>
<td>(PAH-PAH)</td>
</tr>
<tr>
<td>Q</td>
<td>– – – ·</td>
<td>Quebec</td>
<td>(KEH-BECK)</td>
</tr>
<tr>
<td>R</td>
<td>– – ·</td>
<td>Romeo</td>
<td>(ROW-ME-OH)</td>
</tr>
<tr>
<td>S</td>
<td>· · ·</td>
<td>Sierra</td>
<td>(SEE-AIR-RAH)</td>
</tr>
<tr>
<td>T</td>
<td>– –</td>
<td>Tango</td>
<td>(TANG-GO)</td>
</tr>
<tr>
<td>U</td>
<td>· · –</td>
<td>Uniform</td>
<td>(YOU-NEE-FORM) (or OO-NEE-FORM)</td>
</tr>
<tr>
<td>V</td>
<td>· · · –</td>
<td>Victor</td>
<td>(VIK-TAH)</td>
</tr>
<tr>
<td>W</td>
<td>· – –</td>
<td>Whiskey</td>
<td>(WISS-KEY)</td>
</tr>
<tr>
<td>X</td>
<td>– · · –</td>
<td>Xray</td>
<td>(ECKS-RAY)</td>
</tr>
<tr>
<td>Y</td>
<td>– – – –</td>
<td>Yankee</td>
<td>(YANG-KEY)</td>
</tr>
<tr>
<td>Z</td>
<td>– – – –</td>
<td>Zulu</td>
<td>(ZOO-LOO)</td>
</tr>
<tr>
<td>1</td>
<td>· – – – –</td>
<td>One</td>
<td>(WUN)</td>
</tr>
<tr>
<td>2</td>
<td>· – – – –</td>
<td>Two</td>
<td>(TOO)</td>
</tr>
<tr>
<td>3</td>
<td>· · – – –</td>
<td>Three</td>
<td>(TREE)</td>
</tr>
<tr>
<td>4</td>
<td>· · – – –</td>
<td>Four</td>
<td>(FOW-ER)</td>
</tr>
<tr>
<td>5</td>
<td>· · – – –</td>
<td>Five</td>
<td>(FIFE)</td>
</tr>
<tr>
<td>6</td>
<td>– · · ·</td>
<td>Six</td>
<td>(SIX)</td>
</tr>
<tr>
<td>7</td>
<td>– – – ·</td>
<td>Seven</td>
<td>(SEV-EN)</td>
</tr>
<tr>
<td>8</td>
<td>– – – – –</td>
<td>Eight</td>
<td>(AIT)</td>
</tr>
<tr>
<td>9</td>
<td>– – – – –</td>
<td>Nine</td>
<td>(NIN-ER)</td>
</tr>
<tr>
<td>0</td>
<td>– – – – –</td>
<td>Zero</td>
<td>(ZEE-RO)</td>
</tr>
</tbody>
</table>
VOR RECEIVER CHECK

Airborne and ground checkpoints consist of certified radials that should be received at specific points on the airport surface, or over specific landmarks while airborne in the immediate vicinity of the airport.

Should an error in excess of ±4º be indicated through use of the ground check, or ±6º using the airborne check, IFR flight should not be attempted without first correcting the source of the error. CAUTION: No correction other than the “correction card” figures supplied by the manufacturer should be applied in making these VOR receiver checks.

GROUND RECEIVER CHECKPOINTS

<table>
<thead>
<tr>
<th>Station</th>
<th>Freq.</th>
<th>Type VOT Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu</td>
<td>111.0</td>
<td>G</td>
</tr>
</tbody>
</table>

VOR TEST FACILITIES (VOT)

<table>
<thead>
<tr>
<th>STATION</th>
<th>FREQ.</th>
<th>TYPE VOT FACILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu</td>
<td>111.0</td>
<td>G</td>
</tr>
</tbody>
</table>

PAC, 8 SEP 2022 to 3 NOV 2022
San Francisco Radio using Pacific common air/ground ATC frequency networks shared with other ground stations are listed below. The frequencies in use will depend on the time and conditions which affect radio propagation. International flights on the ground at ANC or within VHF range of the SEA-ANC network that are entering the NOPAC Route System within Anchorage Centers FIR boundary should contact San Francisco Radio on VHF 129.4, to obtain primary/secondary HF frequencies and verify SELCAL before entering NOPAC. If unable 129.4, primary/secondary HF frequencies may be obtained from Anchorage ARTCC, but no SELCAL is available.

WEB-PAGE FOR CURRENT SAN FRANCISCO RADIO FREQUENCIES: Radio.arinc.net
Primary and Secondary San Francisco Radio frequencies for the Pacific and Atlantic are continuously updated on this webpage.

CENTRAL WEST PACIFIC (CWP) NETWORK FREQUENCIES
San Francisco
MWARA—2998, 3455, 4666, 5652, 6532, 8870, 8903, 11384, 13300, 17904 and 21985 kHz
LDOCF (c)—3494, 6640, 8933, 11342, 13348, 17925 and 21964 kHz

NORTH PACIFIC (NP) NETWORK FREQUENCIES
San Francisco
MWARA—5628, 6655, 8915, 8951, 10048, 13339, 17946 and 21925 kHz
LDOCF (c)—3494, 6640, 8933, 11342, 13348, 17925 and 21964 kHz

CENTRAL EAST PACIFIC NETWORK FREQUENCIES
San Francisco
Extended Range VHF (a)—131.95 MWARA—2869, 3413, 3452, 5547, 5574, 6673, 8843, 8915, 10057, 11282, 13288, 13354, and 21964 kHz
LDOCF (c)—3494, 6640, 8933, 11342, 13348, 17925, and 21964 kHz
Seattle Pre-flight checks (b)—129.4 (SEA-ANC), 131.80 (North West), 131.95 (Central CA), and 128.90 (Southern CA).

SOUTH PACIFIC (SP) NETWORK FREQUENCIES
San Francisco
MWARA—3467, 5643, 8867, 13261, and 17904 kHz
LDOCF (c)—3494, 6640, 8933, 11342, 13348, 17925, and 21964 kHz

SSB capability available on all HF freqs. (a) Extended Range VHF 131.95. Coverage includes area within approximately 200 NM of the Hawaiian Islands and along the Hawaii-Mainland US tracks extending outward approximately 250 NM from the HNL, SFO, and LAX areas. (b) Call San Francisco Radio on VHF to arrange HF checks. 129.40 available for enroute communications on SEA-ANC routes. (c) Users are reminded that all transmissions on the San Francisco Radio HF SSB LDOCF must be in the single sideband mode (upper sideband only).

Phone patch service will be available as a normal part of the service. Communications are limited to aircraft operational control matters. Public correspondence (personal messages) to/from crew or passengers cannot be accepted. Refer questions to San Francisco Radio communications centers at 1-800-621-0140. Aircraft operating in the Anchorage Arctic CTA/FIR beyond line of sight range of remote control VHF air/ground facilities operated from the Anchorage ARTCC, shall maintain communications with Gander Radio and a listening or SELCAL watch on HF frequencies of the North Atlantic D (NAT D) network (2971 kHz, 4675 kHz, 8891 kHz and 11279 kHz). Additionally, Gander Radio can provide Anchorage and Fairbanks surface observations and terminal forecasts to flight crews on request.

SATCOM VOICE AVAILABLE AS ALTERNATIVE COMMUNICATIONS MEDIUM:
San Francisco Radio has operational use of SATCOM Voice as an acceptable alternative communications medium for oceanic long range ATC communications. It is intended that SATCOM Voice will augment HF radio, in that HF will remain primary for all air-ground-air communications between San Francisco and enroute oceanic aircraft.

Aircraft desiring to contact the San Francisco Radio Communications Center should use the SATCOM Short Code to call San Francisco Radio:

<table>
<thead>
<tr>
<th>Oceanic Area</th>
<th>Center</th>
<th>SATCOM Short Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific</td>
<td>SFO</td>
<td>436625</td>
</tr>
</tbody>
</table>

San Francisco Radio will also utilize SATCOM Voice as a normal operational backup to HF to initiate communications from ground-to-air on the rare occasion when HF communications cannot be established in a timely manner. SATCOM Voice may be used for either ATC or AOC (Aeronautical Operation Control) Communications.
 PARACHUTE JUMPING AREAS

The following tabulation lists all known jumping sites. Unless otherwise indicated, all activities are conducted during daylight hours and under VFR conditions.

<table>
<thead>
<tr>
<th>AREA NAME</th>
<th>LOCATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agat Bay Drop Zone, GU</td>
<td>244 radial, 11.2 NM, UNZ VORTAC</td>
<td>2 NM radius. Intermittent. Up to 10,000 ft MSL. Military use only.</td>
</tr>
<tr>
<td>Anderson Drop Zone, GU</td>
<td>054 radial, 13.5 NM, UNZ VORTAC</td>
<td>2 NM radius. Intermittent. Up to 18,000 ft.</td>
</tr>
<tr>
<td>Apra Harbor, GU</td>
<td>265 radial, 4 NM, UNZ VORTAC</td>
<td>2 NM radius. Intermittent. Up to 12,000 ft.</td>
</tr>
<tr>
<td>Basilan Drop Zone, HI</td>
<td>326 radial, 16.6 NM, HNL VORTAC</td>
<td>2 NM radius. Intermittent. FSS HNL. Military. Up to 12,500 ft. Honolulu Control Facility ARTCC 126.5.</td>
</tr>
<tr>
<td>Dandan Drop Zone, GU</td>
<td>018 radial, 2.4 NM, SN NDB</td>
<td>1 NM radius. Daily. Up to 14,000 ft AGL.</td>
</tr>
<tr>
<td>Dillingham, HI</td>
<td>310 radial, 21.5 NM, HNL VORTAC</td>
<td>3 NM radius. Daily. Up to 16,000 ft.</td>
</tr>
<tr>
<td></td>
<td>306 radial, 22.1 NM, HNL VORTAC</td>
<td>3 NM radius. Up to 16,000 ft.</td>
</tr>
<tr>
<td>East Range/Taro Drop Zone, HI</td>
<td>332 radial, 11.8 NM, HNL VORTAC</td>
<td>0.5 NM radius. Intermittent. Greatest activity on weekends. Military. Maximum altitude 12,500 ft MSL.</td>
</tr>
<tr>
<td>Ferguson Hill Drop Zone, GU</td>
<td>040 radial, 9.5 NM, UNZ VORTAC</td>
<td>2 NM radius. Intermittent. Up to 14,000 ft. MSL. Military use only.</td>
</tr>
<tr>
<td>Guam Intl, GU</td>
<td>080 radial, 5.8 NM, UNZ VORTAC</td>
<td>1 NM radius. Daily. Up to 14,000 ft FSS HNL.</td>
</tr>
<tr>
<td>Honolulu, HI Helemano</td>
<td>340 radial, 14.5 NM, HNL VORTAC</td>
<td>0.7 NM radius. Daily. Greatest activity on weekends. Up to 15,000 ft.</td>
</tr>
<tr>
<td>Kahuku, HI</td>
<td>351 radial, 22.6 NM, HNL VORTAC</td>
<td>Intermittent. Up to 12,500 ft AGL.</td>
</tr>
<tr>
<td>Kanes Drop Zone, HI</td>
<td>341 radial, 22.5 NM, HNL VORTAC</td>
<td>2 NM radius. Intermittent. FSS HNL. Military. Military. Honolulu Control Facility ARTCC 126.5.</td>
</tr>
<tr>
<td>Mangilao Drop Zone, GU</td>
<td>090 radial, 4.6 NM, UNZ VORTAC</td>
<td>2 NM radius. Daily. Up to 14,000 ft FSS HNL. Guam Intl Twr 118.7.</td>
</tr>
<tr>
<td>Northwest Fld Drop Zone, GU</td>
<td>035 radial, 12 NM, UNZ VORTAC</td>
<td>2 NM radius. Intermittent up to 18,000 ft. Military.</td>
</tr>
<tr>
<td>Orote Point, GU</td>
<td>254 radial, 5.5 NM, UNZ VORTAC</td>
<td>2 NM radius. Intermittent. Up to 12,000 ft.</td>
</tr>
<tr>
<td>Pokai Bay, HI</td>
<td>285 radial, 17.5 NM, HNL VORTAC</td>
<td>3 NM radius. Intermittent. Up to 3,000 ft.</td>
</tr>
<tr>
<td>Port Allen, HI</td>
<td>256 radial, 4.2 NM, SOK VORTAC</td>
<td>2 NM radius. Daily. Max altitude 10,000 ft. Honolulu Control Facility Center 126.5.</td>
</tr>
<tr>
<td>Puukapu Drop Zone, HI</td>
<td>345 radial, 22.6 NM, HNL VORTAC</td>
<td>Intermittent. Up to 12,000 ft AGL. FSS HNL. 1 NM radius. M-F 0700–2200, Sat–Sun, Hol 0900–2200. Up to 7,000 ft. Honolulu Cont Fac (ZHN) 142.45.</td>
</tr>
<tr>
<td>Tigershark–Inland Drop Zone, HI</td>
<td>5 NM radius. Daily, all hours. Up to 13,000 ft MSL. Honolulu Control Facility (ZHN) 126.0</td>
<td></td>
</tr>
<tr>
<td>Upolu Point Drop Zone, HI</td>
<td>079 radial, 2.8 NM, SN NDB</td>
<td>4 NM radius. Daily. Up to 14,000 ft FSS HNL. Guam Intl Twr 118.7.</td>
</tr>
</tbody>
</table>

SPECIAL USE AIRSPACE

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Altitude</th>
<th>Time</th>
<th>Controlling Agency</th>
<th>Using Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A–311</td>
<td>Wheeler AAF</td>
<td>To 500’ AGL</td>
<td>1730–0900Z</td>
<td>Lightning Control VHF 139.2 UHF 239.5 FM 39.35</td>
<td>25th Infantry Division, Schofield Barracks, HI</td>
</tr>
<tr>
<td>W–11A</td>
<td>To FL300</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td>Commander Joint Region Marianas</td>
<td></td>
</tr>
<tr>
<td>W–11B</td>
<td>To FL300</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td>Commander Joint Region Marianas</td>
<td></td>
</tr>
<tr>
<td>W–12</td>
<td>To FL600</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td>Commander Joint Region Marianas</td>
<td></td>
</tr>
<tr>
<td>W–13A</td>
<td>LOW</td>
<td>To FL300</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td>Commander Joint Region Marianas</td>
</tr>
<tr>
<td>W–13B</td>
<td>LOW</td>
<td>To FL300</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td>Commander Joint Region Marianas</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Altitude</td>
<td>Time</td>
<td>Controlling Agency</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>W–13A</td>
<td>HIGH</td>
<td>To FL300 to FL600</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commander Joint Region Marianas</td>
<td></td>
</tr>
<tr>
<td>W–13B</td>
<td>HIGH</td>
<td>To FL300 to FL600</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commander Joint Region Marianas</td>
<td></td>
</tr>
<tr>
<td>W–13C</td>
<td>HIGH</td>
<td>To FL600</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commander Joint Region Marianas</td>
<td></td>
</tr>
<tr>
<td>W–11A</td>
<td></td>
<td>To FL300</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commander Joint Region Marianas</td>
<td></td>
</tr>
<tr>
<td>W–13C</td>
<td>LOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W–186</td>
<td></td>
<td>To 9,000´</td>
<td>Cont</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO PMRFAC HAWAREA</td>
<td></td>
</tr>
<tr>
<td>W–187</td>
<td></td>
<td>To 18,000´</td>
<td>Mon–Fri 1700–0800Z</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sat–Sun 1800–0200Z</td>
<td>FACS FAC PH, Pearl Harbor, HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other times by NOTAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W–188</td>
<td></td>
<td>Unltd</td>
<td>Cont</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO PMRFAC HAWAREA</td>
<td></td>
</tr>
<tr>
<td>W–189</td>
<td></td>
<td>Unltd</td>
<td>Mon–Fri 1700–0800Z</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sat–Sun 1800–0200Z</td>
<td>FACS FAC PH, Pearl Harbor, HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other times by NOTAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W–190</td>
<td></td>
<td>Unltd</td>
<td>Mon–Fri 1700–0800Z</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sat–Sun 1800–0200Z</td>
<td>FACS FAC PH, Pearl Harbor, HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other times by NOTAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W–191</td>
<td></td>
<td>To 3000´</td>
<td>Mon–Fri 1700–0800Z</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sat–Sun 1800–0200Z</td>
<td>FACS FAC PH, Pearl Harbor, HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other times by NOTAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W–192</td>
<td></td>
<td>Unltd</td>
<td>Mon–Fri 1700–0800Z</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sat–Sun 1800–0200Z</td>
<td>FACS FAC PH, Pearl Harbor, HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other times by NOTAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W–193</td>
<td></td>
<td>Unltd</td>
<td>Mon–Fri 1700–0800Z</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sat–Sun 1800–0200Z</td>
<td>FACS FAC PH, Pearl Harbor, HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other times by NOTAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W–194</td>
<td></td>
<td>Unltd</td>
<td>Mon–Fri 1700–0800Z</td>
<td>FAA, Honolulu Control Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sat–Sun 1800–0200Z</td>
<td>FACS FAC PH, Pearl Harbor, HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other times by NOTAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Altitude</td>
<td>Time</td>
<td>Controlling Agency</td>
<td>Using Agency</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>W-196</td>
<td></td>
<td>to 2,000’</td>
<td>on–Fri 1700–0800Z, Sat–Sun 1800–0200Z, other times by NOTAM</td>
<td>FAA, Honolulu Control Facility</td>
<td>FACSFAC PH, Pearl Harbor, HI</td>
</tr>
<tr>
<td>W-517</td>
<td>Guam</td>
<td>Unltd</td>
<td>By NOTAM</td>
<td>FAA GUAM CERAP</td>
<td>Commander Joint Region Marianas</td>
</tr>
<tr>
<td>R-3101</td>
<td>PMRF Barking Sands 4</td>
<td>Unltd</td>
<td>Mon–Fri 1600–0400Z, other times by NOTAM</td>
<td>FAA, Honolulu Control Facility</td>
<td>CO Pacific Missile Range Fac</td>
</tr>
<tr>
<td>R-3103</td>
<td>Humuula</td>
<td>to 30,000’</td>
<td>By NOTAM</td>
<td>FAA, Honolulu Control Facility</td>
<td>Commander Gen. US Army Schofield Barracks, HI</td>
</tr>
<tr>
<td>R-3107</td>
<td>Kaula Rock</td>
<td>to 18,000’</td>
<td>Mon–Fri 1700–0800Z, Sat–Sun 1800–0200Z, other times by NOTAM</td>
<td>FAA, Honolulu Control Facility</td>
<td>FACSFAC PH, Pearl Harbor, HI issued at least 24 hours in advance.</td>
</tr>
<tr>
<td>R-3109A</td>
<td>Schofield–Makua</td>
<td>to 8,999’</td>
<td>By NOTAM</td>
<td>FAA, Honolulu Control Facility</td>
<td>US Army Schofield Barracks, HI</td>
</tr>
<tr>
<td>R-3109B</td>
<td>Schofield–Makua</td>
<td>9,000’ to 18,999’</td>
<td>Intermittent</td>
<td>FAA, Honolulu Control Facility</td>
<td>US Army Schofield Barracks, HI</td>
</tr>
<tr>
<td>R-3109C</td>
<td>Schofield–Makua</td>
<td>to 8,999’</td>
<td>By NOTAM</td>
<td>FAA, Honolulu Control Facility</td>
<td>US Army Schofield Barracks, HI</td>
</tr>
<tr>
<td>R-3110A</td>
<td>Schofield–Makua</td>
<td>to 8,999’</td>
<td>By NOTAM</td>
<td>FAA, Honolulu Control Facility</td>
<td>US Army Schofield Barracks, HI</td>
</tr>
<tr>
<td>R-3110B</td>
<td>Schofield–Makua</td>
<td>9,000’ to 18,999’</td>
<td>Intermittent</td>
<td>FAA, Honolulu Control Facility</td>
<td>US Army Schofield Barracks, HI</td>
</tr>
<tr>
<td>R-3110C</td>
<td>Schofield–Makua</td>
<td>to 8,999’</td>
<td>By NOTAM</td>
<td>Honolulu Twr</td>
<td>US Army Schofield Barracks, HI</td>
</tr>
<tr>
<td>R-7201</td>
<td>Farallon de Medinilla Is.</td>
<td>To FL600</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td>Commander Joint Region Marianas</td>
</tr>
<tr>
<td>R-7201A</td>
<td>Farallon de Medinilla Is.</td>
<td>To FL600</td>
<td>By NOTAM</td>
<td>FAA, Guam CERAP</td>
<td>Commander Joint Region Marianas</td>
</tr>
</tbody>
</table>

Altitude given in feet. P—Prohibited R—Restricted A—Alert W—Warning

Unauthorized flight is not permitted within a Prohibited Area, or within a Restricted Area during the time of use and between the altitudes noted in the tabulation. In Warning Areas flights are not restricted, but avoidance is advised during use.

(Authorization may be granted by the controlling agency or by Executive Order of the President).
Key to Aerodrome Forecast (TAF) and Aviation Routine Weather Report (METAR)

TAF KPI0 091730Z 091818 15005KT SSM HZ FEW020 WS010/31022KT
FM1930 30015G25KT 3SM SHRA OVC015 TEMPO 2022 1/2SM +TSRA OVC008CB
FM0100 27008KT 5SM SHRA BKN020 OVC040 PROB40 0407 1SM -RA BR
FM1015 18005KT 6SM -SHRA OVC020 BECMG 1315 P6SM NSW SKC

METAR KPI0 091955Z COR 22015G25KT 3/4SM R28L/2600FT TSRA OVC010CB
18/16 A2992 RMK SLP045 T01820159

<table>
<thead>
<tr>
<th>Forecast</th>
<th>Explanation</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAF</td>
<td>Message type: TAF-routine or TAF AMD-amended forecast, METAR-hourly, SPECI-special or TESTM-non-commissioned ASOS report</td>
<td>METAR</td>
</tr>
<tr>
<td>KPI0</td>
<td>ICAO location indicator</td>
<td>KPI0</td>
</tr>
<tr>
<td>091730Z</td>
<td>Issuance time: ALL times in UTC "Z", 2-digit date, 4-digit time</td>
<td>091955Z</td>
</tr>
<tr>
<td>091818</td>
<td>Valid period: 2-digit date, 2-digit beginning, 2-digit ending times</td>
<td>COR</td>
</tr>
<tr>
<td>15005KT</td>
<td>Wind: 3 digit true-north direction, nearest 10 degrees (or VaRiaBle); next 2-3 digits for speed and unit, KT (KMH or MPS); as needed, Gust and maximum speed; 00000KT for calm; for METAR, if direction varies 60 degrees or more, Variability appended, e.g. 180V260</td>
<td>22015G25KT</td>
</tr>
<tr>
<td>5SM</td>
<td>Prevailing visibility: in U.S., Statute Miles & fractions; above 6 miles in TAF Plus6SM. (Or, 4-digit minimum visibility in meters and as required, lowest value with direction)</td>
<td>3/4SM</td>
</tr>
<tr>
<td></td>
<td>Runway Visual Range: R; 2-digit runway designator Left, Center, or Right as needed; "^"; Minus or Plus in U.S., 4-digit value, FeeT in U.S., (usually meters elsewhere); 4-digit value Variability 4-digit value (and tendency Down, Up or No change)</td>
<td>R28L/2600FT</td>
</tr>
<tr>
<td>HZ</td>
<td>Significant present, forecast and recent weather: see table (on back)</td>
<td>TSRA</td>
</tr>
<tr>
<td>FEW020</td>
<td>Cloud amount, height and type: SKy Clear 0/8, FEW >0/8-2/8, SCAtered 3/8-4/8, BroKeN 5/8-7/8, OVercast 8/8; 3-digit height in hundreds of ft; Towering CUMulus or CumulonimBus in METAR; in TAF, only CB. Vertical Visibility for obscured sky and height "VV004". More than 1 layer may be reported or forecast. In automated METAR reports only, CLeaR for "clear below 12,000 feet"</td>
<td>OVC010CB</td>
</tr>
<tr>
<td></td>
<td>Temperature: degrees Celsius; first 2 digits, temperature "^" last 2 digits, dew-point temperature; Minus for below zero, e.g., M06</td>
<td>18/16</td>
</tr>
<tr>
<td></td>
<td>Altimeter setting: indicator and 4 digits; in U.S., A-inches and hundredths; (Q- hectoPascals, e.g., Q1013)</td>
<td>A2992</td>
</tr>
</tbody>
</table>

PAC, 8 SEP 2022 to 3 NOV 2022
KEY to AERODROME FORECAST (TAF) and AVIATION ROUTINE WEATHER REPORT (METAR)

<table>
<thead>
<tr>
<th>Forecast</th>
<th>Explanation</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS010/31022KT</td>
<td>In U.S. TAF, non-convective low-level (≤2,000 ft) wind shear; 3-digit height (hundreds of ft); "f"; 3-digit wind direction and 2-3 digit wind speed above the indicated height, and unit, KT</td>
<td>RMK SLP045 T01820159</td>
</tr>
<tr>
<td>FM1930</td>
<td>From and 2-digit hour and 2-digit minute beginning time: indicates significant change. Each FM starts on new line, indented 5 spaces.</td>
<td></td>
</tr>
<tr>
<td>TEMPO 2022</td>
<td>TEMPOrary: changes expected for < 1 hour and in total, < half of 2-digit hour beginning and 2-digit hour ending time period</td>
<td></td>
</tr>
<tr>
<td>PROB40 0407</td>
<td>PROBability and 2-digit percent (30 or 40): probable condition during 2-digit hour beginning and 2-digit hour ending time period</td>
<td></td>
</tr>
<tr>
<td>BECMG 1315</td>
<td>BECoMinG: change expected during 2-digit hour beginning and 2-digit hour ending time period</td>
<td></td>
</tr>
</tbody>
</table>

Table of Significant Present, Forecast and Recent Weather - Grouped in categories and used in the order listed below; or as needed in TAF, No Significant Weather.

QUALIFIER

Intensity or Proximity
- Light
- "no sign" Moderate
- + Heavy
- VC Vicinity: but not at aerodrome; in U.S. METAR, between 5 and 10SM of the point(s) of observation; in U.S. TAF, 5 to 10SM from center of runway complex (elsewhere within 8000m)

Descriptor
- MI Shallow
- BC Patches
- PR Partial
- TS Thunderstorm
- BL Blowing
- SH Showers
- DR Drifting
- FZ Freezing

WEATHER PHENOMENA

Precipitation
- DZ Drizzle
- RA Rain
- SN Snow
- SG Snow grains
- IC Ice crystals
- PL Ice pellets
- GR Hail
- GS Small hail/snow pellets
- UP Unknown precipitation in automated observations

Obscuration
- BR Mist (≥5/8SM)
- FG Fog (<5/8SM)
- FU Smoke
- VA Volcanic ash
- SA Sand
- HZ Haze
- PY Spray
- DU Widespread dust

Other
- SQ Squall
- SS Sandstorm
- DS Duststorm
- PO Well developed
- FC Funnel cloud
- +FC tornado/waterspout
- dust/sand whirls

- Explanations in parentheses "()" indicate different worldwide practices.
- Ceiling is not specified; defined as the lowest broken or overcast layer, or the vertical visibility.
- NWS TAFs exclude turbulence, icing & temperature forecasts; NWS METARS exclude trend fctts
- Although not used in US, Ceiling And Visibility OK replaces visibility, weather and clouds if; visibility ≥10 km; no cloud below 5000 ft (1500 m) or below the highest minimum sector altitude, whichever is greater and no CB; and no precipitation, TS, DS, SS, MIFG, DRDU, DRSN or DRSN.

UNITED STATES DEPARTMENT OF COMMERCE

NOAA/PA 96052 National Oceanic and Atmospheric Administration—National Weather Service

PAC, 8 SEP 2022 to 3 NOV 2022
PIREP FORM

3 or 4 letter Identifier

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **UA** | **UUA**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>/OV</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/TM</td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/FL</td>
<td>Altitude/Flight Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/TP</td>
<td>Aircraft Type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Items 1 through 5 are mandatory for all PIREPs

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>/SK</td>
<td>Sky Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/WX</td>
<td>Flight Visibility & Weather</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/TA</td>
<td>Temperature (Celsius)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/WV</td>
<td>Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/TB</td>
<td>Turbulence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/IC</td>
<td>Icing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/RM</td>
<td>Remarks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Form 7110-2 (9/19) Supersedes Previous Edition
Submitting Pilot Weather Reports (PIREPs)

1. **UA - Routine PIREP / UUA - Urgent PIREP**

2. **/OV - Location:** Use Airport or NAVAID identifiers only.
 - Location can be reported as a single fix, radial DME, or a route segment (Fix- Fix)

 Examples: /OV LAX, /OV LAX-SL120005, /OV PDZ-PSP.

3. **/TM – Time:** When conditions occurred or were encountered.
 - Use 4 digits in UTC.

 Examples: /TM 1645, /TM 0915

4. **/FL - Altitude/Flight Level**
 - Use 3 digits for hundreds of feet. If not known, use UNKN.

 Examples: /FL095, /FL310, /FLUNKN

5. **/TP - Type aircraft:** Required if reporting Turbulence or Icing
 - No more than 4 characters, use UNKN if the type is not known.

 Examples: /TP P28A, /TP RV8, /TP B738, /TP UNKN

6. **/SK – Sky Condition/Cloud layers:**
 - Report cloud coverage using contractions: FEW, SCT, BKN, OVC, SKC
 - Report bases in hundreds of feet: BKN005, SCT015, OVC200
 - If bases are unknown, use UNKN
 - Report cloud tops in hundreds of feet: TOP120

 Examples: /SK BKN035, /SK SCT UNKN-TOP125, /SK OVC095-TOP125/ SKC

7. **/WX - Weather:** Flight visibility is always reported first. Append FV reported with SM.
 - Report visibility using 2 digits: FV01SM, FV10SM
 - Unrestricted visibility use FV99SM.
 - Use standard weather contractions e.g.: RA, SH, TS, HS, FG, +, +

 Examples: /WX FV01SM +SHRA, /WX FV10 SM -RA BR.

8. **/TA - Air temperature (Celsius):** Required when reporting icing
 - 2 digits, unless below zero, then prefix digits with M.

 Examples: /TA 15, /TA 04 /TA M06

9. **/WV - Wind:** Direction in 3 digits, speed in 3 or 4 digits, followed by KT.

 Examples: /WV 270045KT, /WV 080110KT

10. **/TB - Turbulence:**
 - Report intensity using LGT, MOD, SEV, or EXTRM
 - Report duration using INTMT, OCNL or CONS when reported by pilot.
 - Report type using CAT or CHOP when reported by pilot.
 - Include altitude only if different from /FL.
 - Use ABV or BLO when limits are not defined.
 - Use NEG if turbulence is not encountered.

 Examples: /TB OCNL MOD, /TB LGT CHOP, /LGTO60, /TB MOD BLO 090, /TB NEG

11. **/IC - Icing:**
 - Report intensity using TRACE, LGT, MOD or SEV
 - Report type using RIME, CLR, or MX
 - Include altitude only if different than /FL.
 - Use NEG if icing not encountered.

 Examples: /IC LGT-MOD RIME, /IC SEV CLR 028-045, /IC NEG

12. **/RM - Remarks:** Use to report phenomena that does not fit in any other field.
 - Report the most hazardous element first.
 - Name of geographic location from /OV field fix

 Examples: /RM LLWS +/-15KT SFC-003 DURC RWY22 JFK /RM MULLAN PASS /RM RA RWY 02L BA MEDIUM TO POOR 3IN DRY SN OVER COMPACTED SN

Examples of Completed PIREPS

UA /OV RFD /TM 1315 /FL160 /TP PA44 /SK OVC025-TOP095/OVC150 /TA M12 /TB INTMT LGT CHOP

UA /OV DHT360015-AMA /TM 2116 /FL050 /TP PA32 /SK BKN090 /WX FV05SM -RA /TA 04 /TB LGT /IC NEG

UUA /OV PDZ010018 /TM 1520 /FL125 /TP C172 /WX 270048KT TB SEV 055-085 /RM CAJON PASS
FLIGHT SERVICE STATIONS
NATIONAL WEATHER SERVICE OFFICES

Flight Service Station (FSS) facilities process flight plans and provide flight planning and weather briefing services to pilots. FSS services in the contiguous United States, Hawaii and Puerto Rico, are provided by a contract provider at two large facilities. In Alaska, FSS services are delivered through a network of three hub facilities and 14 satellite facilities, some of which operate part–time and some are seasonal. Because of the interconnectivity between the facilities, all FSS services including radio frequencies are available continuously using published data.

National Weather Service Office (WSO): Only general weather information is available on the National Weather Service Office (WSO) telephone numbers listed. NOTE: National Weather Service Offices in the United States are not authorized to provide official Pilot Weather Briefings.

NATIONAL FSS TELEPHONE NUMBER

Pilot Weather Briefings 1-800–WX–BRIEF (1-800-992-7433) *

OTHER FSS TELEPHONE NUMBERS

Medevac Flights Only (except in Alaska) 1-877–LIF–GRD3 (1-877-543-4733)

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu, Oahu</td>
<td>117.7T (LNY) 116.9T (ITO) 116.1T (MKK) 115.7T (IAI) 114.8T (HNL) 114.3T (OGG) 113.5T (LIH) 113.3T (MUE) 112.3T (UPP) 115.4T (SOK) 123.6 122.6 122.2 122.1R 255.4 296.7 233.7</td>
</tr>
</tbody>
</table>

Remarks:
- FSS—1-800–WX–BRIEF, available 24 hours.
- WSO—973–5286, operates 24 hours.
- Surface weather reports available on request via air/ground voice communication frequencies.
- Best VHF enroute communication coverage due to location of RCO sites:
 - 122.2–Molokai & Lanai routes, 122.6–Lihue routes, 123.6–Maui & Hawaii routes
- Routine and selected special reports—Honolulu/Hilo/Kahului/Guam.
- Terminal forecast—Honolulu/Hilo/Guam.

Hilo WSO—933–6941, operates 1000–0200Z.

Lihue WSO—245–2420, operates 1000–0200Z.

R—Receive only T—Transmit only

Emerg Freq. 121.5 and 243.0 are available at most stations and are not tabulated.

* Outer Islands may be required to dial LD 808–833–8440 for FSS weather briefing and flight planning svc.
KEY AIR TRAFFIC FACILITIES

Air Traffic Control System Command Center

Main Number: 540–422–4100

RGNL AIR TRAFFIC DIVISIONS

<table>
<thead>
<tr>
<th>REGION</th>
<th>TELEPHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaskan</td>
<td>907–271–5464</td>
</tr>
<tr>
<td>Central</td>
<td>816–329–2500</td>
</tr>
<tr>
<td>Eastern</td>
<td>718–553–4502</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>847–294–7202</td>
</tr>
<tr>
<td>New England</td>
<td>781–238–7500</td>
</tr>
<tr>
<td>Northwest Mountain</td>
<td>425–227–2500</td>
</tr>
<tr>
<td>Southern</td>
<td>404–305–5500</td>
</tr>
<tr>
<td>Southwest</td>
<td>817–222–5500</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>310–725–6500</td>
</tr>
</tbody>
</table>

AIR ROUTE TRAFFIC CONTROL CENTERS (ARTCCs)

<table>
<thead>
<tr>
<th>ARTCC NAME</th>
<th>*24 HR RGNL DUTY OFFICE TELEPHONE #</th>
<th>BUSINESS HOURS</th>
<th>BUSINESS TELEPHONE #</th>
<th>**CLEARANCE DELIVERY TELEPHONE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuquerque</td>
<td>817–222–5006</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>505–856–4300</td>
<td>505-856-4561</td>
</tr>
<tr>
<td>Anchorage</td>
<td>907–271–5936</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>907–269–1137</td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>404–305–5180</td>
<td>7:30 a.m.–5:00 p.m.</td>
<td>770–210–7601</td>
<td>770-210-7692</td>
</tr>
<tr>
<td>Boston</td>
<td>404–305–5156</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>617–455–3100</td>
<td>603-879-6899</td>
</tr>
<tr>
<td>Chicago</td>
<td>817–222–5006</td>
<td>8:00 a.m.–4:00 p.m.</td>
<td>630–906–8221</td>
<td>630-906-8921</td>
</tr>
<tr>
<td>Cleveland</td>
<td>817–222–5006</td>
<td>8:00 a.m.–4:00 p.m.</td>
<td>440–774–0310</td>
<td>440-774-0490</td>
</tr>
<tr>
<td>Denver</td>
<td>206–231–2099</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>303–651–4100</td>
<td>303-651-4257</td>
</tr>
<tr>
<td>Ft. Worth</td>
<td>817–222–5006</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>817–858–7500</td>
<td>817-858-7584</td>
</tr>
<tr>
<td>Honolulu</td>
<td>310–725–3300</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>808–840–6100</td>
<td>808-840-6201</td>
</tr>
<tr>
<td>Houston</td>
<td>817–222–5006</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>281–230–5300</td>
<td>281-230-5622</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>817–222–5006</td>
<td>8:00 a.m.–4:00 p.m.</td>
<td>317–247–2231</td>
<td>317-247-2411</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>404–305–5180</td>
<td>8:00 a.m.–4:30 p.m.</td>
<td>904–549–1501</td>
<td>904-845-1592</td>
</tr>
<tr>
<td>Kansas City</td>
<td>817–222–6006</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>913–254–8500</td>
<td>913-254-8508</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>661–265–8200</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>661–265–8200</td>
<td>661-575-2079</td>
</tr>
<tr>
<td>Memphis</td>
<td>404–305–5180</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>901–368–8103</td>
<td>901-368-8453</td>
</tr>
<tr>
<td>Miami</td>
<td>404–305–5180</td>
<td>7:00 a.m.–3:30 p.m.</td>
<td>305–716–1500</td>
<td>305-716-1731</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>817–222–5006</td>
<td>8:00 a.m.–4:00 p.m.</td>
<td>651–463–5580</td>
<td>651-463-5588</td>
</tr>
<tr>
<td>New York</td>
<td>718–995–5426</td>
<td>8:00 a.m.–3:30 p.m.</td>
<td>631–468–1001</td>
<td>631-468-1453</td>
</tr>
<tr>
<td>Oakland</td>
<td>310–725–3300</td>
<td>6:30 a.m.–3:00 p.m.</td>
<td>510–745–3331</td>
<td></td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>206–231–2099</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>801–320–2500</td>
<td>801-320-2568</td>
</tr>
<tr>
<td>San Juan</td>
<td>404–305–5180</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>787–253–8663</td>
<td>787-253-8664</td>
</tr>
<tr>
<td>Seattle</td>
<td>206–231–2099</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>253–351–3500</td>
<td>253-351-3694</td>
</tr>
<tr>
<td>Washington</td>
<td>718–995–5426</td>
<td>8:00 a.m.–4:30 p.m.</td>
<td>703–771–3401</td>
<td>703-771-3587</td>
</tr>
</tbody>
</table>

*Facilities can be contacted through the Rgnl Duty Officer during non-business hours.

MAJOR TERMINAL RADAR APPROACH CONTROLS (TRACONs)

<table>
<thead>
<tr>
<th>TRACON NAME</th>
<th>*24 HR RGNL DUTY OFFICE TELEPHONE #</th>
<th>BUSINESS HOURS</th>
<th>BUSINESS TELEPHONE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>404–305–5180</td>
<td>7:00 a.m.–3:30 p.m.</td>
<td>404-669–1200</td>
</tr>
<tr>
<td>Chicago</td>
<td>817–222–5006</td>
<td>8:00 a.m.–4:00 p.m.</td>
<td>847-608-5509</td>
</tr>
<tr>
<td>Dallas/Ft. Worth</td>
<td>817–222–5006</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>972-615-2500</td>
</tr>
<tr>
<td>Denver</td>
<td>425–227–1389</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>303-342-1500</td>
</tr>
<tr>
<td>Houston</td>
<td>817–222–5006</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>281–230–8400</td>
</tr>
<tr>
<td>New York</td>
<td>718–995–5426</td>
<td>8:00 a.m.–4:30 p.m.</td>
<td>516-683-2901</td>
</tr>
<tr>
<td>Northern CA</td>
<td>310–725–3300</td>
<td>7:00 a.m.–3:30 p.m.</td>
<td>916-366-4001</td>
</tr>
<tr>
<td>Potomac</td>
<td>718–995–5426</td>
<td>8:00 a.m.–4:30 p.m.</td>
<td>540-349–7500</td>
</tr>
<tr>
<td>Southern CA</td>
<td>310–725–3300</td>
<td>7:30 a.m.–4:00 p.m.</td>
<td>858-537–5800</td>
</tr>
</tbody>
</table>

* Facilities can be contacted through the Rgnl Duty Officer during non-business hours.
<table>
<thead>
<tr>
<th>AIRPORT NAME</th>
<th>DAILY NAS REPORTABLE AIRPORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuquerque Intl Sunport, NM</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Andrews AFB, MD</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>Baltimore/Washington Intl Thurgood Marshall, MD</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>Boston Logan Intl, MA</td>
<td>404–305-5156</td>
</tr>
<tr>
<td>Bradley Intl, CT</td>
<td>404–305-5156</td>
</tr>
<tr>
<td>Burbank/Bob Hope, CA</td>
<td>301–725-3300</td>
</tr>
<tr>
<td>Charlotte Douglas Intl, NC</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Chicago Midway, IL</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Chicago O’Hare Intl, IL</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Cleveland Hopkins Intl, OH</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Covington/Cincinnati, OH</td>
<td>708–294-7401</td>
</tr>
<tr>
<td>Dallas/Ft. Worth Intl, TX</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Dayton Cox Intl, OH</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Denver Intl, CO</td>
<td>425–227-1389</td>
</tr>
<tr>
<td>Detroit Metro, MI</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Fairbanks Intl, AK</td>
<td>907–271-5936</td>
</tr>
<tr>
<td>Fort Lauderdale Intl, FL</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>George Bush Int’tl, TX</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Honolulu/Jackson Atlanta Intl, GA</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Indianapolis Intl, IN</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>Kansas City Intl, MO</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Las Vegas McCarran, NV</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>Los Angeles Intl, CA</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>Louis Armstrong New Orleans Intl, LA</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Memphis Intl, TN</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Miami Intl, FL</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Minneapolis/St. Paul, MN</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Nashville Intl, TN</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>New York Kennedy Intl, NY</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>New York LaGuardia, NY</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>Newark Liberty Intl, NJ</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>Norman Y. Mineta San Jose Intl, CA</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>Ontario Intl, CA</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>Orlando Intl, FL</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Philadelphia Intl, PA</td>
<td>817–995-5426</td>
</tr>
<tr>
<td>Phoenix Sky Harbor Intl, AZ</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>Pittsburgh Intl, PA</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>Portland Intl, OR</td>
<td>425–227-1389</td>
</tr>
<tr>
<td>Raleigh-Durham Intl, NC</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Ronald Reagan Washington National, DC</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>Salt Lake City, UT</td>
<td>425–227-1389</td>
</tr>
<tr>
<td>San Antonio Intl, TX</td>
<td>817–222-5006</td>
</tr>
<tr>
<td>San Diego Lindbergh Intl, CA</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>San Francisco Intl, CA</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>San Juan Intl, PR</td>
<td>310–725-3300</td>
</tr>
<tr>
<td>Seattle-Tacoma Intl, WA</td>
<td>206-767-2900</td>
</tr>
<tr>
<td>St. Louis Lambert, MO</td>
<td>817-222-5006</td>
</tr>
<tr>
<td>Tampa Intl, FL</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Ted Stevens Anchorage Intl, AK</td>
<td>907–271-5936</td>
</tr>
<tr>
<td>Teterboro, NJ</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>Washington Dulles Intl, DC</td>
<td>718–995-5426</td>
</tr>
<tr>
<td>West Palm Beach, FL</td>
<td>404–305-5180</td>
</tr>
<tr>
<td>Westchester Co, NY</td>
<td>718–995-5426</td>
</tr>
</tbody>
</table>

* Facilities can be contacted through the Rgnl Duty Office during non-business hours.
Military Training Routes

1. National security depends largely on the deterrent effect of our airborne military forces. To be proficient, the military services must train in a wide range of airborne tactics. One phase of this training involves “low level” combat tactics. The required maneuvers and high speeds are such that they may occasionally make the see-and-avoid aspect of VFR flight more difficult without increased vigilance in areas containing such operations. In an effort to ensure the greatest practical level of safety for all flight operations, the Military Training Route program was conceived.

2. The Military Training Routes (MTR) program is a joint venture by the FAA and the Department of Defense (DOD). MTR routes are mutually developed for use by the military for the purpose of conducting low-altitude, high-speed training. There are IFR (IR) routes located in the Marianas Islands. These routes are flown from FL200 or as assigned by ATC to 1,000 feet MSL. Points of entry/exit and altitudes along the route are charted for use in preflight pilot briefings. Pilots should review this information to acquaint themselves with these routes that are located along their route of flight and in the vicinity of airports on Guam, Rota, Tinian and Saipan.

3. Non participating aircraft are not prohibited from flying within an MTR, however, extreme vigilance should be exercised when conducting flight through or near these routes. Pilots should contact Guam CERAP or Saipan radio to obtain information on route usage in their vicinity.

4. Marianas Islands Military Training Routes are also published in the Mariana Islands Sectional Aeronautical Chart, the DOD Flight Information Publication (enroute). Chart 1, Panel B and the DOD FLIP are planning document AP/3.
DISTANCES

<table>
<thead>
<tr>
<th>METERS/FEET</th>
<th>NAUTICAL MILES TO</th>
<th>NAUTICAL MILES TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT/MTR$</td>
<td>KM</td>
</tr>
<tr>
<td></td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td>0.305</td>
<td>1</td>
<td>0.185</td>
</tr>
<tr>
<td>0.610</td>
<td>2</td>
<td>0.370</td>
</tr>
<tr>
<td>0.914</td>
<td>3</td>
<td>0.556</td>
</tr>
<tr>
<td>1.219</td>
<td>4</td>
<td>0.741</td>
</tr>
<tr>
<td>1.524</td>
<td>5</td>
<td>0.926</td>
</tr>
<tr>
<td>1.829</td>
<td>6</td>
<td>1.111</td>
</tr>
<tr>
<td>2.134</td>
<td>7</td>
<td>1.296</td>
</tr>
<tr>
<td>2.438</td>
<td>8</td>
<td>1.482</td>
</tr>
<tr>
<td>2.743</td>
<td>9</td>
<td>1.667</td>
</tr>
<tr>
<td>3.048</td>
<td>10</td>
<td>1.85</td>
</tr>
<tr>
<td>6.096</td>
<td>20</td>
<td>3.70</td>
</tr>
<tr>
<td>9.144</td>
<td>30</td>
<td>5.56</td>
</tr>
<tr>
<td>12.192</td>
<td>40</td>
<td>7.41</td>
</tr>
<tr>
<td>15.240</td>
<td>50</td>
<td>9.26</td>
</tr>
<tr>
<td>18.288</td>
<td>60</td>
<td>11.11</td>
</tr>
<tr>
<td>21.336</td>
<td>70</td>
<td>12.96</td>
</tr>
<tr>
<td>24.384</td>
<td>80</td>
<td>14.82</td>
</tr>
<tr>
<td>27.432</td>
<td>90</td>
<td>16.67</td>
</tr>
<tr>
<td>30.480</td>
<td>100</td>
<td>18.52</td>
</tr>
<tr>
<td>60.960</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>91.440</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>121.920</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>152.400</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>304.800</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>609.601</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>914.402</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>1219.202</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>1524.003</td>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>

Nautical Miles to

<table>
<thead>
<tr>
<th>KM</th>
<th>NM</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.04</td>
<td>20</td>
<td>23.02</td>
</tr>
<tr>
<td>55.56</td>
<td>30</td>
<td>34.52</td>
</tr>
<tr>
<td>74.08</td>
<td>40</td>
<td>46.03</td>
</tr>
<tr>
<td>92.60</td>
<td>50</td>
<td>57.54</td>
</tr>
<tr>
<td>111.12</td>
<td>60</td>
<td>69.05</td>
</tr>
<tr>
<td>129.64</td>
<td>70</td>
<td>80.55</td>
</tr>
<tr>
<td>148.16</td>
<td>80</td>
<td>92.06</td>
</tr>
<tr>
<td>166.68</td>
<td>90</td>
<td>103.57</td>
</tr>
<tr>
<td>185.20</td>
<td>100</td>
<td>115.08</td>
</tr>
<tr>
<td>370.40</td>
<td>200</td>
<td>230.16</td>
</tr>
<tr>
<td>555.60</td>
<td>300</td>
<td>345.23</td>
</tr>
<tr>
<td>740.80</td>
<td>400</td>
<td>460.31</td>
</tr>
<tr>
<td>926.00</td>
<td>500</td>
<td>575.39</td>
</tr>
<tr>
<td>1111.20</td>
<td>600</td>
<td>690.47</td>
</tr>
<tr>
<td>1296.40</td>
<td>700</td>
<td>805.54</td>
</tr>
<tr>
<td>1481.60</td>
<td>800</td>
<td>920.62</td>
</tr>
<tr>
<td>1666.80</td>
<td>900</td>
<td>1035.70</td>
</tr>
<tr>
<td>1852.00</td>
<td>1000</td>
<td>1150.78</td>
</tr>
</tbody>
</table>

Nautical Miles to

<table>
<thead>
<tr>
<th>KM</th>
<th>NM</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>2.700</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>3.240</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>3.780</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>4.320</td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>4.860</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>5.399</td>
<td></td>
</tr>
</tbody>
</table>
Millibars to Inches

<table>
<thead>
<tr>
<th>mb</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>940</td>
<td>27.76</td>
<td>27.79</td>
<td>27.82</td>
<td>27.85</td>
<td>27.88</td>
<td>27.91</td>
<td>27.94</td>
<td>27.96</td>
<td>27.99</td>
<td>28.02</td>
</tr>
<tr>
<td>980</td>
<td>28.94</td>
<td>28.97</td>
<td>29.00</td>
<td>29.03</td>
<td>29.06</td>
<td>29.09</td>
<td>29.12</td>
<td>29.15</td>
<td>29.18</td>
<td>29.21</td>
</tr>
<tr>
<td>990</td>
<td>29.23</td>
<td>29.26</td>
<td>29.29</td>
<td>29.32</td>
<td>29.35</td>
<td>29.38</td>
<td>29.41</td>
<td>29.44</td>
<td>29.47</td>
<td>29.50</td>
</tr>
<tr>
<td>1000</td>
<td>29.53</td>
<td>29.56</td>
<td>29.59</td>
<td>29.62</td>
<td>29.65</td>
<td>29.68</td>
<td>29.71</td>
<td>29.74</td>
<td>29.77</td>
<td>29.80</td>
</tr>
<tr>
<td>1010</td>
<td>29.83</td>
<td>29.85</td>
<td>29.88</td>
<td>29.91</td>
<td>29.94</td>
<td>29.97</td>
<td>30.00</td>
<td>30.03</td>
<td>30.06</td>
<td>30.09</td>
</tr>
<tr>
<td>1020</td>
<td>30.12</td>
<td>30.15</td>
<td>30.18</td>
<td>30.21</td>
<td>30.24</td>
<td>30.27</td>
<td>30.30</td>
<td>30.33</td>
<td>30.36</td>
<td>30.39</td>
</tr>
<tr>
<td>1030</td>
<td>30.42</td>
<td>30.45</td>
<td>30.47</td>
<td>30.50</td>
<td>30.53</td>
<td>30.56</td>
<td>30.59</td>
<td>30.62</td>
<td>30.65</td>
<td>30.68</td>
</tr>
<tr>
<td>1040</td>
<td>30.71</td>
<td>30.74</td>
<td>30.77</td>
<td>30.80</td>
<td>30.83</td>
<td>30.86</td>
<td>30.89</td>
<td>30.92</td>
<td>30.95</td>
<td>30.98</td>
</tr>
<tr>
<td>1050</td>
<td>31.01</td>
<td>31.04</td>
<td>31.07</td>
<td>31.10</td>
<td>31.12</td>
<td>31.15</td>
<td>31.18</td>
<td>31.21</td>
<td>31.24</td>
<td>31.27</td>
</tr>
</tbody>
</table>

Temperature Scales in Degrees

°C	°F														
-40	-40.0	-28	-18.4	-16	3.2	-4	24.8	8	46.4	20	68.0	32	89.6	44	111.2
-39	-38.2	-27	-16.6	-15	5.0	-3	26.6	9	48.2	21	69.8	33	91.4	45	113.0
-38	-36.4	-26	-14.8	-14	6.8	-2	28.4	10	50.0	22	71.6	34	93.2	46	114.8
-37	-34.6	-25	-13.0	-13	8.6	-1	30.2	11	51.8	23	73.4	35	95.0	47	116.6
-36	-32.8	-24	-11.2	-12	10.4	0	32.0	12	53.6	24	75.2	36	96.8	48	118.4
-35	-31.0	-23	-9.4	-11	12.2	1	33.8	13	55.4	25	77.0	37	98.6	49	120.2
-34	-29.2	-22	-7.6	-10	14.0	2	35.6	14	57.2	26	78.8	38	100.4	50	122.0
-33	-27.4	-21	-5.8	-9	15.8	3	37.4	15	59.0	27	80.6	39	102.2	51	124.0
-32	-25.6	-20	-4.0	-8	17.6	4	39.2	16	60.8	28	82.4	40	104.0	52	126.0
-31	-23.8	-19	-2.2	-7	19.4	5	41.0	17	62.6	29	84.2	41	105.8	53	128.0
-30	-22.0	-18	-0.4	-6	21.2	6	42.8	18	64.4	30	86.0	42	107.6	54	130.0
-29	-20.2	-17	1.4	-5	23.0	7	44.6	19	66.2	31	87.8	43	109.4	55	132.0

PAC, 8 SEP 2022 to 3 NOV 2022
HOT SPOTS

An “Airport surface hot spot” is a location on an aerodrome movement area with a history or potential risk of collision or runway incursion, and where heightened attention by pilots/drivers is necessary.

A "hot spot" is a runway safety related problem area on an airport that presents increased risk during surface operations. Typically it is a complex or confusing taxiway/taxiway or taxiway/runway intersection. The area of increased risk has either a history of or potential for runway incursions or surface incidents, due to a variety of causes, such as but not limited to: airport layout, traffic flow, airport marking, signage and lighting, situational awareness, and training. Hot spots are depicted on airport diagrams as open circles or polygons designated as “HS 1”, “HS 2”, etc. and tabulated in the list below with a brief description of each hot spot. Hot spots will remain charted on airport diagrams until such time the increased risk has been reduced or eliminated.

<table>
<thead>
<tr>
<th>CITY/AIRPORT</th>
<th>HOT SPOT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOLULU</td>
<td>HS 1</td>
<td>Rwy 04R/Rwy 04L thresholds: wrong sfc ldg risk. Pilots cleared to land Rwy 04L or 04R sometimes land on the wrong rwy.</td>
</tr>
<tr>
<td></td>
<td>HS 2</td>
<td>Acft ldg Rwy 04R and exiting left onto Twy K sometimes fail to hold short of Rwy 04L—22R and Rwy 08L—26R.</td>
</tr>
<tr>
<td></td>
<td>HS 3</td>
<td>Acft proceeding north on Twy E and instructed to turn left onto Twy B sometimes miss the turn onto Twy B and proceed onto Rwy 08L—26R without clearance.</td>
</tr>
<tr>
<td></td>
<td>HS 4</td>
<td>Twy A, Twy V, Twy T, Twy J, and Twy M all converge at or in close proximity to Rwy 08L.</td>
</tr>
<tr>
<td></td>
<td>HS 5</td>
<td>Area not visible from twr.</td>
</tr>
<tr>
<td></td>
<td>HS 6</td>
<td>Minimal dist btn rwy hold short lines btn Rwy 04L—22R/Rwy 04R—22L. Plan to hold short of the parl rwy. ATC is aware the acft tail is encroaching the landed rwy.</td>
</tr>
<tr>
<td>KAHULUI</td>
<td>HS 1</td>
<td>Acft ldg Rwy 05 and instructed to exit on Twy A with a left turn onto Twy F to the east ramp, sometimes turn left onto Twy G by mistake.</td>
</tr>
<tr>
<td></td>
<td>HS 2</td>
<td>Rwy holding position marking Rwy 02—20 located at the intersection of Twy E and the ramp.</td>
</tr>
<tr>
<td></td>
<td>HS 3</td>
<td>Acft ldg Rwy 02 that are instructed to exit left on Twy A sometimes cross Rwy 05—23 wo cnc.</td>
</tr>
<tr>
<td>KAILUA/KONA</td>
<td>HS 1</td>
<td>Extv helicopter OPS on twy A abm ramp K.</td>
</tr>
<tr>
<td></td>
<td>HS 2</td>
<td>Extv helicopter OPS on twy A S of twy C.</td>
</tr>
<tr>
<td>KAUNAKAKAI</td>
<td>HS 1</td>
<td>Area not visible from cnt twr.</td>
</tr>
<tr>
<td>MOLOKAI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAC, 8 SEP 2022 to 3 NOV 2022
INTENTIONALLY LEFT BLANK
International Flight Plan

<table>
<thead>
<tr>
<th>PRIORITY</th>
<th>ADDRESSEE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FILING TIME</th>
<th>ORIGINATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIFIC IDENTIFICATION OF ADDRESSEE(S) AND/OR ORIGINATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 MESSAGE TYPE</th>
<th>7 AIRCRAFT IDENTIFICATION</th>
<th>8 FLIGHT RULES</th>
<th>TYPE OF FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 NUMBER</th>
<th>TYPE OF AIRCRAFT</th>
<th>WAKE TURBULENCE CAT.</th>
<th>10 EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13 DEPARTURE AERODROME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 CRUISING SPEED</th>
<th>LEVEL</th>
<th>ROUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 DESTINATION AERODROME</th>
<th>HR</th>
<th>MIN</th>
<th>ALTN AERODROME</th>
<th>2ND ALTN AERODROME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18 OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPLEMENTARY INFORMATION (NOT TO BE TRANSMITTED IN FPL MESSAGES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 ENDURANCE (HR MIN)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D/ NUMBER OF CAPACITY COVER</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| A/ AIRCRAFT COLOR AND MARKINGS |
| |
| |

| N/ REMARKS |
| |
| |

<table>
<thead>
<tr>
<th>C/ PILOT-IN-COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FILED BY</th>
<th>ACCEPTED BY</th>
<th>ADDITIONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Form 7233-4 (7/15)
FLIGHT PLANS

1. Requirement for Flight Plan Filing

ICAO Annex 2 requires a flight plan to be submitted for any flight across international borders. This permits en route stations and the destination station to render better service by having prior knowledge of flights. Aircraft on VFR flight plans must make regular position reports to ATC for flight following, weather safety advisories, and prompt search and rescue action in the proper area if necessary. Flight plans may be submitted to Flight Service through www.1800wxbrief.com, any flight planning application, or by calling 1-800-WX-BRIEF. Aircraft radio may be used if no other means are available. If Flight Service cannot be reached, San Francisco Radio will relay flight plans received via HF radio to Oakland ARTCC.

2. Flight Plan Filing Time Requirement

Due to the critical workload in the processing of flight data and the increased time in transit due to the volume of messages it is strongly recommended that ICAO flight plan messages be filed and transmitted to the appropriate Control Center not less than one hour before estimated time of departure.

3. Filing Mach Number in Flight Plan

a. For oceanic departures, Mach speed and flight level should be specified in the flight plan in one of the following ways:
 b. Preferred method: Mach number and flight level immediately preceding the initial domestic portion of the route of flight.

 Example of Item 15 of ICAO Flight Plan for Honolulu to San Francisco:
 M084F340 MOLOKAI 3 CLUTS R465 CINNY/NO494F360 OSI

4. Filing an EET in Flight Plan

In accordance with ICAO DOC–4444, flight plans with routes entering the Oakland OCA/FIR (KZAK), must contain the elapsed time (EET) in field 18, an entry point for KZAK and an estimated time. It is not mandatory to file the boundary crossing point in filed 15 of the route of flight but it is permitted.
PROCEDURES

ALTIMETER SETTING
OAKLAND OCEANIC FIR

1. Each person operating an aircraft shall maintain the cruising altitude or flight level of the aircraft by reference to an altimeter that is set.

2. Within the Hawaiian Islands domestic area, within 100 NM of the Nimitz VORTAC, and within 35 NM of Saipan NDB:
 a. At FL180 and above, to standard altimeter setting 29.92 inches of mercury (QNE).
 b. Below 18,000' MSL, to current altimeter setting (QNH).

3. Within all other areas of the Oakland OCA/FIR, at or above 5,500' MSL, to standard altimeter setting 29.92 inches of mercury (QNE).

AIR TRAFFIC CONTROL RADAR BEACON SYSTEM (ATCRBS)

1. ATCRBS is similar to and compatible with military coded radar beacon equipment. Civil Mode A is identical to military Mode 3. The Radar Beacon Code Employment Plan is designed to minimize the number of code changes and to enable a controller to display and quickly identify only those Mode 3/A responses from aircraft operating within his area of jurisdiction.

2. Accordingly, pilots of aircraft equipped with a functioning coded radar beacon transponder, and operating on an IFR flight plan in an area covered by radar, will be instructed by ATC to reply on the appropriate code. Flights assigned a particular code by ATC are expected to remain on that code until further advised by ATC. (See also Beacon Code Requirements within this section.) Within the Hawaiian Islands domestic area and the Guam ADIZ, pilots of aircraft equipped with functioning coded radar beacon transponder will adjust their transponders to reply on Mode 3/A codes specified below, unless a different code has been assigned by advance coordination or via direct communication with ATC. If possible, coordination shall be effected with the appropriate ATC facility when special military operations preclude compliance with this requirement.
 a. Code 4000 – For all operations within restricted/warning areas.
 b. Code 1200 – For all VFR operations not being provided radar services by ATC facilities.

3. Should the pilot of an aircraft equipped with a coded radar beacon transponder experience a loss of two–way radio capability he should:
 a. Adjust his transponder to reply on Mode A/3, Code 7700 for a period of 1 minute.
 b. Change to Code 7600 and remain on 7600 for period of 15 minutes or the remainder of flight, whichever occurs first.
 c. Repeat steps a and b, as practicable.

4. The pilot should understand that he might not be in an area of radar coverage. Many radar facilities are not presently equipped to automatically display Code 7600 and will interrogate 7600 only when the aircraft is under direct radar control at the time of radio failure. Replying on Code 7700 first increases the probability of early detection of a radio failure condition.

OCEANIC POSITION REPORTING PROCEDURES
OAKLAND OCEANIC FIR

1. GENERAL
 For non ADS equipped aircraft, any waypoint filed in the route of flight (Item 15 of the ICAO flight plan) must be reported as a position report whether the filed waypoint is compulsory or not. If a non-compulsory waypoint is not filed in item 15, it does not need to be reported.

2. POSITION REPORTS
 a. When operating on a published ATS Route or a temporary route established by NOTAM, report and estimate the designated reporting points using the specified waypoint names or geographic coordinates as specified in the NOTAM.
 b. When operating on a random route:
 (1) Flights whose tracks are predominantly east and west shall report over each 5 degrees or 10 degrees (10 degrees will be used if the speed of the aircraft is such that 10 degrees will be traversed within 80 minutes or less) meridian longitude extending east and west from 180 degrees.
 (2) Flights whose tracks are predominantly north and south shall report over each 5 degrees or 10 degrees (10 degrees if traversed within 80 minutes) parallel of latitude extending north and south of the equator.
 c. ATC may require specific flights to report more frequently than each 5 degrees for aircraft with slow ground speeds.
 d. Position reports shall be transmitted at the time of crossing the designated reporting point or as soon thereafter as possible.

3. CONTENTS OF POSITION REPORT
 Position reports shall include information on present position, estimated next position, and ensuing position in sequence as indicated below.
 a. PRESENT POSITION – Information shall include:
 (1) The word “position.”
 (2) Aircraft identification.
 (3) Reporting point name, if or not named:
 (a) Latitude (2 digits or more) and,
 (b) Longitude (3 digits or more).
 b. Time over reporting point (4 digits UTC).
c. Altitude (Flight Level). When forwarding an altitude report within the Oakland OCA/FIR, pilots should report their present altitude and their assigned altitude exactly as cleared if the present and assigned altitudes differ. Aircraft assigned a block altitude must report their current altitude and the assigned block altitude. A restriction to cross a point at an altitude is not a block altitude assignment and should not be reported as a block of altitudes.

d. ESTIMATED NEXT POSITION
 (1) Reporting point name, or if not named, latitude and longitude as in a.3 above and,
 (2) Estimated time over next position (4 digits UTC).

e. ENSUING FIX
 (1) Name only of the next succeeding fix whether compulsory or not, or if not named, latitude and longitude as in a.3 above.

4. WEATHER REPORTS
 a. Weather reports shall be included as provided in Section 3 of Standard AIREP Form by all flights unless exempted from weather reporting by the Weather Service and/or ATC.

5. ADHERENCE TO ATC APPROVED ROUTE
 a. If an aircraft, notwithstanding all action taken to adhere to the route specified in the ATC clearance, inadvertently deviates from this route, action shall be taken to regain it as soon as reasonable and not further ahead than 200 nautical miles from the DR position at which the heading was altered to regain the route specified in the ATC clearance. Action to regain this route shall not be delayed in anticipation of obtaining a requested re-clearance.

6. EXCEPTIONS TO POSITION REPORTING PROCEDURES
 a. Within Oakland OCA/FIR, no 5 degree report need be made that would fall within 100 NM of Guam. Aircraft cleared via terminal area routes report compulsory reporting fixes. Other aircraft report 100 NM from Nimitz VORTAC. Where other island destinations within the Oakland Oceanic FIR are not more than one-degree latitude-longitude from a 5 degrees fixed line reporting point, the ETA and arrival report may be substituted in lieu of the adjacent fixed line report.
 b. To the east of the Hawaiian Islands it will not be necessary to report the 155 degree west position if position will be reported at the entry/exit fixes on the Honolulu Control Facility boundary. To the west of the Hawaiian Islands, the 160 degree west need not be reported.

7. POSITION REPORTS OVER OAKLAND OCEANIC OCA/FIR BOUNDARIES
 a. Aircraft entering the Oakland OCA/FIR are requested to forward boundary position reports via San Francisco Radio or CPDLC as follows:
 (1) Boundary fixes that are compulsory reporting points.
 (2) Filed fixes when they coincide with the FIR Boundary.
 (3) The boundary between the Manila, Ujung Pandang, Port Moresby and Nauru FIR's and the Oakland OCA/FIR.
 (4) The boundary of the Open Area Uncontrolled Airspace west of Mazatlan ACC and the Oakland OCA/FIR along 120 degrees west longitude.
 (5) Outbound from the Guam CERAP area at the 250 NM ARC from the UNZ VORTAC.
 (6) Eastbound PACOTS Flights should report only those fixes detailed in the published route.
 (7) When requested by ATC.
 b. Aircraft leaving the lateral limits of the Oakland OCA/FIR and entering uncontrolled airspace shall forward the time over the boundary outbound.
1. CLIMB TIMES
A distinction should be made between the time at which higher flight level is requested and the time at which the next higher flight level can be accepted.

2. CHANGE OF FLIGHT LEVEL
 a. Pilots are advised that when an aircraft is proceeding from one Oceanic Control Area to another at the time that a change of flight level is desired, coordination must be effected between the Oceanic Control Centers concerned before an ATC clearance can be issued.
 b. A flight level request shown on a filed flight plan does not constitute authority for an aircraft to change flight level; a specific ATC clearance for the flight level change is required.

CHANGE OF TRUE AIRSPEED/MACH NUMBER
OAKLAND OCEANIC FIR

CHANGE OF SPEED
Pilots must inform ATC prior to making a planned en route speed change, as indicated in Item 15 of a filed flight plan. Additionally, pilots are reminded that such changes are not authorized when a specific ATC clearance assigning a Mach number to maintain has been issued.

ATTN ALL AIRCREWS: New procedural requirement for flights operating in Oakland Oceanic Control Area (KZAK). In order to support cost index or econ speeds and maintain ATC separation spacing, aircrews are required to use the following procedures in the KZAK FIR.

A pilot must inform ATS via voice or CPDLC each time the cruising Mach number varies or is expected to vary by a value equal to or greater than 0.02 Mach from:
 (1) the Mach number at FIR entry; or
 (2) any subsequent speed change notified to ATC in flight.
CLASS C AIRSPACE

1. CLASS C Dimensions
 a. CLASS C (a basic standard design with minor site specific variations). CLASS C airspace consists of two circles, both centered on the primary/CLASS C airport. The inner circle has a radius of 5 NM. The outer circle has a radius of 10 NM. The airspace of the inner circle extends from the surface of CLASS C airport up to 4,000 feet above the airport. The airspace area between the 5 and 10 NM rings begins at a height 1,200 feet AGL and extends to the same altitude cap as the inner circle.
 b. OUTER AREA. The normal radius will be 20 NM with some variations based on site specific requirements. The outer area extends outward from the primary/CLASS C airport and extends from the lower limits of radar/radio coverage up to the ceiling of the approach control's delegated airspace, excluding CLASS C and other airspace as appropriate.

2. CLASS C is Regulatory Airspace
 a. ARRIVALS AND OVERFLIGHTS:
 (1) Two–way radio communications must be established with ATC facility having jurisdiction over CLASS C airspace prior to entry and thereafter as instructed by ATC.
 b. DEPARTURES:
 (1) Primary or Satellite Airport with an operating control tower: Two–way radio communications must be established and maintained with the control tower in accordance with Federal Aviation Regulations (FAR) 91.129 and thereafter as instructed by ATC.
 (2) Satellite Airports without an operating control tower: Two–way radio communications must be established as soon as practicable after departing with the ATC facility having jurisdiction over CLASS C and thereafter as instructed by ATC.
 c. ATC SERVICES WITHIN CLASS C AIRSPACE:
 (1) Sequencing of all arriving aircraft to the primary/CLASS C airport.
 (2) Standard IFR separation between FR aircraft.
 (3) Between IFR and VFR aircraft – traffic advisories and conflict resolution so that radar targets do not touch, or 500 feet vertical separation.
 (4) Between VFR aircraft – traffic advisories and as appropriate, safety alerts.
 d. CLASS C AIRSPACE REQUIREMENTS:
 (1) Student pilot or better
 (2) Two–way radio
 (3) Mode C transponder

NOTE: For additional information see the AIM/FARS.

EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) PROCEDURES

1. The ESCAT Plan contains responsibilities of military authorities. Federal Aviation Administration, and Federal Communications Commission in regard to actions to be taken for security control of air traffic and air navigation aids in defense of the United States during defense emergencies. The ESCAT Plan provides that, in the defense of the United States during defense emergencies, the military will direct actions to be taken in regard to landing, grounding, diversion or dispersal of aircraft, and in regard to the control of air navigation aids.

2. At the time that ESCAT is implemented, ATC facilities will broadcast instructions received from the military over available ATC frequencies. Depending on instructions received from the military, VFR flights may be directed to land at the nearest available airport; IFR flights will be expected to proceed as directed by ATC. Pilots on the ground may be required to file a flight plan and obtain approval (through FAA) before conducting flight operations.

3. In view of the above, all pilots should guard an ATC or Flight Service Station frequency at all times while conducting flight operations.

PAC, 8 SEP 2022 to 3 NOV 2022
National Security and Air Defense Identification Zones (ADIZ)

NATIONAL SECURITY

1. General
 b. All aircraft entering domestic U.S. airspace from points outside must provide for identification prior to entry. To facilitate early aircraft identification of all aircraft in the vicinity of U.S.–International airspace boundaries, Air Defense Identification Zones (ADIZ) have been established. (See Figures 1–4–1, 1–4–2, 1–4–3, and 1–4–4.)
 c. Operational requirement for aircraft entering or flying within the ADIZ areas are as follows:
 (1) Flight plan requirements. Except as specified in subparagraphs d and e, an instrument flight rules (IFR) or defense visual flight rules (DVFR) flight plan must be on file with the appropriate aeronautical facility as follows:
 (a) Generally, for all operations that enter an ADIZ.
 (b) For operations that will enter or exit the United States and which will operate into, within, or across the contiguous U.S. ADIZ, regardless of true airspeed.
 (c) The flight plan must be filed before departure except for operations associated with the Alaska ADIZ when the airport of departure has no facility for filing a flight plan; in which case, the flight plan may be filed immediately after takeoff or when within range of the aeronautical facility.
 (2) Two–way radio requirements. For the majority of operations associated with an ADIZ, an operating two–way radio is required. See 14 CFR Part 99.1 for exceptions.
 (3) Transponder requirements. Unless otherwise authorized by ATC, each aircraft conducting operations into, within, or across the Contiguous U.S. ADIZ must be equipped with an operable radar beacon transponder having altitude reporting capability (Mode C), and that transponder must be turned on and set to reply on the appropriate code or as assigned by ATC.
 (4) Position reporting requirements.
 (a) For IFR flight, normal IFR position reporting.
 (b) For DVFR flights, the estimated time of ADIZ penetration must be filed with the aeronautical facility at least 15 minutes prior to penetration except for flight in the Alaskan ADIZ; in which case, report prior to penetration.
 (c) For inbound aircraft of foreign registry, the pilot must report to the aeronautical facility at least 1 hour prior to ADIZ penetration.
 (5) Aircraft position tolerances:
 (a) Over land, the tolerance is within plus or minus 5 minutes from the estimated time over a reporting point or point of penetration and within 10 NM from the centerline of an intended track over an estimated reporting point or penetration point.
 (b) Over water, the tolerance is plus or minus 5 minutes from the estimated time over a reporting point or point of penetration and within 20 NM from the centerline of the intended track over an estimated reporting point or point of penetration (to include the Aleutian Islands).
 d. Except when applicable under 14 CFR 99.7, Part 99 does not apply to aircraft operations.
 (1) Within the 48 contiguous states and the District of Columbia, or within the State of Alaska, and remains within 10 NM of the point of departure.
 (2) Over any island, or within 12 NM of the coastline of any island, in the Hawaii ADIZ.
 (3) Associated with any ADIZ other than the contiguous U.S. ADIZ when the aircraft is operating at true airspeed of less than 180 knots.
 e. Authorizations to deviate from the requirements of Part 99 may also be granted by an Air Route Traffic Control Center (ARTCC), on a local basis, for some operations associated with an ADIZ.
 f. A VFR flight plan makes an aircraft subject to interception for positive identification when entering an ADIZ. Pilots are urged to file the required Defense VFR (DVFR) flight plan either in person or by telephone prior to departure.
Fig 1-4-1. Air Defense Identification Zone Boundaries/Designated Mountainous Areas
Fig 1-4-2. Alaska Air Defense Identification Zones/Designated Mountainous Areas
Fig 1-4-3. Guam Air Defense Identification Zone and Defense Area
Fig 1-4-4. Hawaiian Air Defense Identification Zone and Defense Area
Section 6: Emergency Procedures

Interception Signals

ICAO Standard

Signals Initiated by Intercepts Aircraft and Responses by Intercepted Aircraft

<table>
<thead>
<tr>
<th>Series</th>
<th>Intercepting Aircraft Signals</th>
<th>Meaning</th>
<th>Intercepted Aircraft Response</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AIRPLANES: DAY–Rocking wings from a position slightly above and ahead of, and normally to the left of, the intercepted aircraft and, after acknowledgement, a slow level turn, normally to the left, on to the desired heading.</td>
<td>You have been intercepted. Follow me.</td>
<td>AIRPLANES: DAY–Rocking wings and following.</td>
<td>Understood, will comply.</td>
</tr>
</tbody>
</table>

NIGHT–Same and, in addition, flashing navigational lights at irregular intervals.

NOTE 1.–Meteorological conditions or terrain may require the intercepting aircraft to take up a position slightly above and ahead of, and to the right of, the intercepted aircraft and to make the subsequent turn to the right.

NOTE 2.–If the intercepted aircraft is not able to keep pace with the intercepting aircraft, the latter is expected to fly a series of race-track patterns and to rock its wings each time it passes the intercepted aircraft.

| 2 | DAY OR NIGHT–An abrupt breakaway maneuver from the intercepted aircraft consisting of a climbing turn of 90 degrees or more without crossing the line of flight of the intercepted aircraft. | You may proceed. | AIRPLANES: DAY or NIGHT–Rocking wings. | Understood, will comply. |

HELCOPTERS: DAY or NIGHT–Rocking aircraft.

| 3 | DAY–Circling aerodrome, lowering landing gear and overflying runway in direction of landing or, if the intercepted aircraft is a helicopter, overflying the helicopter landing area. | Land at this aerodrome. | AIRPLANES: DAY–Lowering landing gear, following the intercepting aircraft and, if after overflying the runway landing is considered safe, proceeding to land. | Understood, will comply. |

NIGHT–Same and, in addition, showing steady landing lights.

HELCOPTERS: DAY or NIGHT–Following the intercepting aircraft and proceeding to land, showing a steady landing light (if carried).
EMERGENCY PROCEDURES

INTERCEPTION SIGNALS

ICAO STANDARD

SIGNALS INITIATED BY INTERCEPTING AIRCRAFT AND RESPONSES BY INTERCEPTED AIRCRAFT

<table>
<thead>
<tr>
<th>SERIES</th>
<th>INTERCEPTING AIRCRAFT SIGNALS</th>
<th>MEANING</th>
<th>INTERCEPTED AIRCRAFT RESPONSE</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>AIRPLANES:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAY–Raising landing gear while passing over landing runway at a height exceeding 300m (1,000 ft) but not exceeding 600m (2,000 ft) above the aerodrome level, and continuing to circle the aerodrome.</td>
<td>Aerodrome you have designated is inadequate.</td>
<td>DAY OR NIGHT–If it is desired that the intercepted aircraft follow the intercepting aircraft to an alternate aerodrome, the intercepting aircraft raises its landing gear and uses the Series 1 signals prescribed for intercepting aircraft.</td>
<td>Understood, follow me.</td>
</tr>
<tr>
<td></td>
<td>NIGHT–Flash landing lights while passing over landing runway at a height exceeding 300m (1,000 ft) but not exceeding 600m (2,000 ft) above the aerodrome level, and continuing to circle the aerodrome. If unable to flash landing lights, flash any other lights available.</td>
<td></td>
<td>If it is decided to release the intercepted aircraft, the intercepting aircraft uses the Series 2 signals prescribed for intercepting aircraft.</td>
<td>Understood, you may proceed.</td>
</tr>
<tr>
<td>5</td>
<td>AIRPLANES:</td>
<td>Cannot comply.</td>
<td>DAY or NIGHT–Use Series 2 signals prescribed for intercepting aircraft.</td>
<td>Understood.</td>
</tr>
<tr>
<td></td>
<td>DAY or NIGHT–Regular switching on and off of all available lights but in such a manner as to be distinct from flashing lights.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AIRPLANES:</td>
<td>In distress.</td>
<td>DAY or NIGHT–Use Series 2 signals prescribed for intercepting aircraft.</td>
<td>Understood.</td>
</tr>
<tr>
<td></td>
<td>DAY or NIGHT–Irregular flashing of all available lights.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HELICOPTERS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day or Night–Irregular flashing of all available lights.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTRESS INTERCEPTION SIGNALS

<table>
<thead>
<tr>
<th>SIGNAL BY INTERCEPTED AIRCRAFT</th>
<th>MEANING</th>
<th>RESPONSE BY INTERCEPTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY–Porpoising</td>
<td>In Distress</td>
<td>DAY OR NIGHT–Use appropriate interception signals as shown above.</td>
</tr>
<tr>
<td>NIGHT–Switching on landing lights and holding steady beam.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTE TO INTERCEPTION SIGNALS
(See preceding page)

The word "interception" in this context does not include intercept and escort service provided, on request, to an aircraft in distress.

An aircraft which is intercepted by another aircraft shall immediately:

a. follow the instructions given by the intercepting aircraft, interpreting and responding to visual signals on preceding page;
b. notify, if possible, the appropriate air traffic services unit;
c. attempt to establish radio communication with the intercepting aircraft or with the appropriate intercept control unit, by making a general call on the emergency frequency 243.0 MHz and repeating this call on the emergency frequency 121.5 MHz, if practicable, giving the identity and position of the aircraft and the nature of the flight;
d. if equipped with SSR transponder select Mode 3/A Code 7700, unless otherwise instructed by the appropriate air traffic services unit.

If any instructions received by radio from any sources conflict with those given by the intercepting aircraft by visual or radio signals, the intercepted aircraft shall request immediate clarification while continuing to comply with the instructions given by the intercepting aircraft.

SEARCH AND RESCUE

National Search and Rescue Plan.—Under the National Search and Rescue Plan, the U.S. Coast Guard is responsible for coordination of search and rescue for the Maritime Region, and the U.S. Air Force is responsible for coordination of search and rescue for the Inland Region. In order to carry out this responsibility, the Air Force and the Coast Guard have established Rescue Coordination Centers to direct search and rescue activities within their regions. This service is available to all persons and property in distress, both civilian and military. Normally, for aircraft incidents, information will be passed to the Rescue Coordination Centers through the appropriate Air Route Traffic Control Center.

Search and Rescue is a life-saving service provided through the combined efforts of the FAA, Air Force, Coast Guard, State Board of Aeronautics, Aeronautic Commissions or other similar State agencies who are assisted by other organizations such as the Civil Air Patrol, Sheriffs Air Patrol, State Police, etc. It provides search, survival aid, and rescue of personnel of missing or crashed aircraft.

Prior to departure on every flight, local or otherwise, someone at the departure point should be advised of your destination and the route of flight if other than direct. Search efforts are often wasted and rescue is often delayed because of pilots who thoughtlessly take off without advising anyone where they are going.

All you need to remember to obtain this valuable protection is to file, activate, and close flight plans with Flight Service through www.1800wxbrief.com, by using a flight planning application, by radio, or by calling 1-800-WX-BRIEF.

Close your Flight Plan.—The control tower does not automatically close your VFR flight plan since many of the landing aircraft are not operating on flight plans. It remains the responsibility of a pilot who has filed a flight plan to close it. This will prevent a needless search. Remember, the lives of other pilots are sometimes sacrificed when searching for overdue pilots. For an emergency occurring in flight, send a distress message if possible by radio. The facility receiving your message will alert the rescue organization serving your area.

To assure survival and rescue in the event of a crash landing, the following advice is given:

(1) For flight over uninhabited land areas it is wise to take suitable survival equipment depending on type of climate and terrain.

(2) If forced landing occurs at sea, chances for survival are governed by degree of crew proficiency in emergency procedures and by effectiveness of water survival equipment.

(3) If it becomes necessary to ditch, distressed aircraft should make every effort to ditch near a surface vessel. If time permits, the position of the nearest vessel can be obtained from a Coast Rescue Coordination Center through the FAA facility.

(4) The rapidity of rescue on land or water will depend on how accurately your position may be determined. If flight plan has been followed and your position is on course, rescue should be prompt.

(5) Unless you have good reason to believe that you will not be located by search aircraft, it is better to remain near your aircraft and prepare means for signalling whenever aircraft approach your position.

Search and rescue facilities made available to all pilots include the following:

(a) Rescue coordination centers;
(b) Search and rescue aircraft;
(c) Rescue vessels;
(d) Pararescue and ground rescue teams;
(e) Emergency radio fixing.

The Air Rescue Service and the U.S. Coast Guard extend a welcome invitation to all pilots to visit any of their rescue units. By so doing, pilots may become more familiar with the actual means whereby this vital phase of aviation safety is carried out. The location and address of your nearest rescue unit may be obtained from the FAA or any AF or CG Rescue Coordination Center.

Report of crashed or missing aircraft may be made by any individual by a telephone call to the nearest FAA facility or to any Air Force or Coast Guard facility.
EMERGENCY PROCEDURES

PACIFIC SAR COORDINATOR (PACSARCOORD): Coast Guard Commander, Pacific Area (PACSARCOORD), has overall responsibility for the administration, management and oversight of aeronautical SAR in the U.S. aeronautical and maritime SAR Regions (SRRs). Pacific and Arctic Oceans. The coordination of SAR operations is provided by JRCC Alameda, JRCC Seattle, JRCC Honolulu, and JRCC Juneau within their respective aeronautical SRRs.

SRR ALAMEDA: JRCC Alameda is responsible for the coordination and conduct of SAR operations in aeronautical SRR Alameda own SAR area. Aeronautical SRR Alameda is established within following coordinates:
From 42ºN, 124º13'W(California-Oregon State Line), to 40ºN, 150ºW to 07º09'N, 120ºW to 30º45'N, 120º50'W to 32º33'N, 117º05'W thence north along the Pacific coastline back to 42ºN, 124º13'W. (Telephone number for RCC Alameda is 510-437-3701)

SRR HONOLULU: JRCC Honolulu is responsible for the coordination and conduct of SAR operations in aeronautical SRR Honolulu and aeronautical Search and Rescue Sub-Region (SRS) Guam. Aeronautical SRR Honolulu is established within following coordinates:
From 03º30'N, 120ºW to 07º09'N, 120ºW to 40ºN, 150ºW to 40ºN, 165ºE to 27ºN, 165ºE to 27ºN, 155ºE to 21ºN, 155ºE to 21ºN, 130ºE to 07ºN, 130ºE to 3º30’N, 133ºE to 3º30’N, 141ºE to 00ºN, 141ºE to 00ºN, 160º to 3º30’N, 160º to 03º30’N, 180º to 5ºS, 180º to 5ºS, 155ºW to 3º30’N, 145ºW to 03º30’N, 120ºW. (Telephone number for RCC Honolulu is 808–535–3333)

SRS Guam: Joint Rescue Sub-Center (JRSC) Guam is responsible for the coordination and conduct of SAR operations in aeronautical SRS Guam. Aeronautical SRS Guam is established within following coordinates:
From 17ºN, 130ºE to 17ºN, 160ºE to 09º30’N, 160ºE to 07ºN, 165ºE to 03º30’N, 165ºE to 03º30’N, 160ºE to 00ºN, 160ºE to 00ºN, 141ºE to 03º30’N, 141ºE to 3º30’N, 133ºE to 07ºN, 130ºE to 17ºN, 130ºE. Guam Joint Rescue Sub-Center (JRSC) at Guam has responsibility for SAR in this area. (Telephone for JRSC Guam 671-355-4824)

SRR SEATTLE: JRCC Seattle is responsible for the coordination and conduct of SAR operations in aeronautical SRR Seattle. Aeronautical SRR Seattle is established within the following coordinates:
From 48º20’N, 145ºW to 40ºN, 150ºW to 42ºN, 124º13’W thence north along the Pacific coastline to 49º00’07”N, 122º49’05”W to 49º00’07”N, 123º19’21”W to 48º49’53”N, 123º00’30”W to 48º46’02”N, 123º00’32”W to 48º41’35”N, 123º16’27”W to 48º32’56”N, 123º13’09”W to 48º27’14”N, 123º09’39”W to 48º25’24”N, 123º06’51”W to 48º17’04”N, 123º14’51”W to to 48º13’30”N, 123º32’25”W to 48º14’26”N, 123º40’41”W to 48º17’50”N, 124º00’40”W to 48º30’N, 124º45’W to 48º30’N, 125ºW to 48º20’N, 128ºW to 48º20’N, 145ºW. (Telephone number for RCC Seattle is 206-220-7001)

SRR JUNEAU: JRCC Juneau is responsible for the coordination and conduct of SAR operations in aeronautical SRR Juneau. Aeronautical SRR Juneau is established within the following coordinates:
From 50º05’N, 159ºE to 43ºN, 165ºE to 40ºN, 165ºE to 40ºN, 150ºW to 48º20’N, 145ºW to 54º40’N, 140ºW to 54º40’N, 136ºW to 54ºN, 136ºW to 54º13’N, 134º57’W to 54º39’27”N, 132º41’W to 54º42’30”N, 130º36’30”W thence north along the United States/Canada National border to 69º39’47”N, 141ºW to North Pole to 65ºN, 168º58’24”W to 64º03’N, 172º12’W to 60ºN, 180º to 54º49’N, 170º12’E to 54ºN, 169ºE to 50º05’N, 159ºE. (Telephone number for JRCC Juneau is 907-463-2000)

COAST GUARD RESCUE COORDINATION CENTERS: Coast Guard Rescue Coordination Centers are served by major radio stations which guard 500kHz (CW). 8364 kHz (CW), and 2182 kHz (Voice). In addition to these major radio stations, the 247 Coast Guard units along the sea coasts of the United States and shores to the Great Lakes guard 2182 kHz (Voice). All of these facilities are available for reporting distress or potential distress. THE CALL “NCU” (CW) or “COAST GUARD” (VOICE) ALERTS ALL COAST GUARD RADIO STATIONS WITHIN RANGE.
EMERGENCY PROCEDURES

I. A pilot in any emergency phase (uncertainty, alert, or distress) should do three things to obtain assistance:
 a. If equipped with IFF, switch to “Emergency” position.
 b. Contact controlling agency and give nature of distress and pilots intentions.—If unable to contact controlling agencies attempt to contact any agency on assigned frequency or any of the following frequencies (transmit and receive):

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Emission</th>
<th>Effective Range in Nautical Miles</th>
<th>Guarded By</th>
</tr>
</thead>
<tbody>
<tr>
<td>121.5 MHz</td>
<td>Voice</td>
<td>Generally limited to Radio line-of-sight</td>
<td>All military twrs, most civil twrs, VHF direction finding stns, radar facilities, ocean station vessels.</td>
</tr>
<tr>
<td>243.0 MHz</td>
<td>Voice</td>
<td>Generally limited to radio line-of-sight</td>
<td>All military twrs, most civil twrs, VHF direction finding stns, radar facilities, ocean station vessels.</td>
</tr>
<tr>
<td>2182 kHz</td>
<td>Voice</td>
<td>Generally less than 300 miles for average aircraft installations</td>
<td>Some ships and boats at sea, most Coast Guard stations, most commercial coast stations.</td>
</tr>
<tr>
<td>500 kHz</td>
<td>CW</td>
<td>Generally less than 100 miles for average aircraft installations</td>
<td>Most large ships at sea, most Coast Guard radio stations, most commercial coast stations.</td>
</tr>
<tr>
<td>8364 kHz</td>
<td>CW</td>
<td>Up to several thousand miles, depending upon propagation conditions. Subject to “skip”.</td>
<td>U.S.N. direction finding stations, ocean station vessels and most Coast Guard radio stations</td>
</tr>
</tbody>
</table>

Transmit as much of the following as possible:
1. MAYDAY, MAYDAY, MAYDAY (if distress), or PAN, PAN, PAN (if uncertainty or alert). If CW transmission use SOS (distress) or XXX (uncertainty or alert).
2. Aircraft identification repeated three times.
3. Type of aircraft.
4. Position or estimated position (stating which).
5. Heading (True or Magnetic) (stating which).
6. True airspeed or estimated true airspeed (stating which).
7. Altitude.
8. Fuel remaining in hours and minutes.
10. Pilot’s intentions (bailout, ditch, crash landing, etc.).
11. Assistance desired (fix, steer, bearing, escort, etc.).
12. Two 10–second dashes with mike (voice) or key (CW) followed by aircraft identification (once) OVER (Voice) or K (CW).

c. Comply with instructions received.—Accept the “communications control” offered to you by the ground radio station, silence interfering radio stations, and do not shift frequency or shift to another ground station unless absolutely necessary.

II. Pilots on IFR flights experiencing two-way radio failure are expected to adhere to prescribed procedures. The pilot should remember that he has two means of declaring an emergency.
 (1) Emergency IFF and/or mode A/3 Code 7700.
 (2) Sending emergency message.

Ground stations have three electronic means of assisting:
 (1) Receipt of emergency message;
 (2) Radar detection of IFF signal; and
 (3) DF bearings.

THE PILOT SHOULD REMEMBER THE FOUR CS:
 a. Confess your predicament to any ground radio station. Do not wait too long. Give SAR a chance!
 b. Communicate with your ground link and pass as much of the distress message on first transmission as possible. We need information for best SAR action!
 c. Climb if possible for better radar and DF detection. If flying at low altitude, the chance for establishing radio contact is improved by climbing, also chances of alerting radar systems are sometimes improved by climbing or descending.

NOTE:—Climbing or descending under IFR conditions within controlled air space is not permitted except in EMERGENCY. Air traffic control will operate on the assumption that the provisions of FAR 91.185 are being followed by the pilot.

d. Comply—especially Comply—with advice and instructions received, if you really want to help. Assist the ground “communications control” station to control communications on the distress frequency on which you are working (as that is the distress frequency for your case). Tell interfering stations to maintain silence until you call. Cooperate!

III. For bail–out, set radio for continuous emission. For ditching or crash landing, the radio equipment should if it is considered that there is no additional risk of fire and if circumstances permit, be set for continuous transmission.

When a pilot is in doubt of his position, or feels apprehensive for his safety, he should not hesitate to request assistance. Search and Rescue facilities, including Radar, Radio and DF stations, are ready and willing to help. There is no penalty for using them. Delay has caused crashes and cost lives. Take action!

PAC, 8 SEP 2022 to 3 NOV 2022
EMERGENCY PROCEDURES
INTERNATIONAL GROUND/AIR EMERGENCY CODE
EMERGENCY SIGNALS
GROUND–AIR VISUAL CODE FOR USE BY SURVIVORS

<table>
<thead>
<tr>
<th>No.</th>
<th>MESSAGE</th>
<th>CODE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Require assistance</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Require medical assistance</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No or Negative</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Yes or Affirmative</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Proceeding in this direction</td>
<td></td>
</tr>
</tbody>
</table>

If in doubt use International symbol SOS

GROUND-AIR VISUAL CODE FOR USE BY GROUND SEARCH PARTIES

<table>
<thead>
<tr>
<th>NO</th>
<th>MESSAGE</th>
<th>CODE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operation completed</td>
<td>L L L</td>
</tr>
<tr>
<td>2</td>
<td>We have found all personnel</td>
<td>L L</td>
</tr>
<tr>
<td>3</td>
<td>We have found only some personnel</td>
<td>++</td>
</tr>
<tr>
<td>4</td>
<td>We are not able to continue. Returning to base</td>
<td>X X</td>
</tr>
<tr>
<td>5</td>
<td>Have divided into two groups. Each proceeding in direction indicated.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Information received that aircraft is in this direction</td>
<td>→ →</td>
</tr>
<tr>
<td>7</td>
<td>Nothing found. Will continue search.</td>
<td>N N</td>
</tr>
</tbody>
</table>

1. INSTRUCTIONS
 a. Lay out symbols by using strips of fabric or parachutes, pieces of wood, stones, or any available material.
 b. Provide as much color contrast as possible between material used for symbols and background against which symbols are exposed.
 c. Symbols should be at least 10 feet high or larger. Care should be taken to lay out symbols exactly as shown.
 d. In addition to using symbols every effort is to be made to attract attention by means of radio, flares, smoke, or other available means.
 e. On snow-covered ground, signals can be made by dragging, shoveling or tramping. Depressed areas forming symbols will appear black from the air.
 f. Pilot should acknowledge message by rocking wings from side to side.
INTENTIONALLY LEFT BLANK
| Inoperative Components or Visual Aids Table | A1 |
| Explanation of Terms/Landing Minima Data | B1 |
| General Information | C1 |
| Abbreviations | D1 |
| Legend—IAP Planview | E1 |
| Legend—IAP Profile | F1 |
| Legend—Standard Terminal Arrival Charts | G1 |
| Legend—Departure Procedure Charts | G2 |
| Legend—Airport Diagram/Sketch | H1 |
| Legend—Approach Lighting Systems | I1 |
| Frequency Pairing | J1 |
| Index of Terminal Charts and Minimums | K1 |
| IFR Takeoff Minimums, Departure Procedures, and Diverse Vector Area (Radar Vectors) | L1 |
| IFR Alternate Airport Minimums | M1 |
| Radar Minimums | N1 |
| Land and Hold-Short Operations (LAHSO) | O1 |
| Hot Spots | P1 |
| Standard Terminal Arrival Charts | Z1 |
| Terminal Charts | Page 1 |
| Rate of Climb/Descent Table | Inside Back Cover |

CORRECTIONS, COMMENTS AND/OR PROCUREMENT

FOR CHARTING ERRORS, OR FOR CHANGES, ADDITIONS, RECOMMENDATIONS ON PROCEDURAL ASPECTS CONTACT:
FAA, Aeronautical Information Services
1305 East-West Highway
SSMC 4, Room 4531
Silver Spring, MD 20910-3281
Telephone: 1-800-638-8972
https://www.faa.gov/air_traffic/flight_info/aeronav/aero_data/

For inquiries regarding military charts, please contact aerohelp@nga.mil

FOR PROCUREMENT:
For digital products, visit our website at: https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/

For a list of approved FAA Print Providers, visit our website at: https://www.faa.gov/air_traffic/flight_info/aeronav/print_providers/

Frequently asked questions (FAQ) are answered on our website at: https://www.faa.gov/go/ais

See the FAQs prior to contact via toll free number or email.

Request for the creation or revisions to Airport Diagrams should be in accordance with FAA Order 7910.4
INOP COMPONENTS

INOPERATIVE COMPONENTS OR VISUAL AIDS TABLE
(For Civil Use Only)

Straight-in and Sidestep landing minimums published on instrument approach procedure charts are based on full operation of all components and visual aids (see exception below for ALSF 1 & 2) associated with the particular approach chart being used. Higher minimums are required with inoperative components or visual aids as indicated below. If more than one component is inoperative, each minimum is raised to the highest minimum required by any single component that is inoperative. ILS glideslope inoperative minimums are published on the instrument approach charts as localizer minimums. This table applies to approach categories A thru D and is to be used unless amended by notes on the approach chart. Such notes apply only to the particular approach category(ies) as stated. Category E inoperative notes will be specified when published on civil charts. The inoperative table does not apply to Circling minimums. See legend page for description of components indicated below.

Full Operation Exception: For ALSF 1 & 2 operated as SSALR, or when the sequenced flashing lights are inoperative, there is no effect on visibility for ILS lines of minima.

(1) ILS, PAR, LPV, GLS minima

<table>
<thead>
<tr>
<th>Inoperative Component or Visual Aid</th>
<th>Increase Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ALS types (except ODALS)</td>
<td>¼ mile</td>
</tr>
</tbody>
</table>

(2) ILS, LPV, GLS with visibility minima of RVR 1800†/2000*/2200*

<table>
<thead>
<tr>
<th>Inoperative Component or Visual Aid</th>
<th>Increase Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSF 1 & 2, MALSR, SSALR</td>
<td>To RVR 4000†</td>
</tr>
<tr>
<td></td>
<td>To RVR 4500*</td>
</tr>
<tr>
<td>TDZL or RCLS</td>
<td>To RVR 2400#</td>
</tr>
<tr>
<td>RVR</td>
<td>To ½ mile</td>
</tr>
</tbody>
</table>

#For ILS, LPV, GLS procedures with a 200 foot HAT, RVR 1800 authorized with use of FD or AP or HUD to DA.

(3) All Approach Types and all lines of minima other than (1) & (2) above

<table>
<thead>
<tr>
<th>Inoperative Component or Visual Aid</th>
<th>Increase Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSF 1 & 2, MALSR, SSALR</td>
<td>½ mile</td>
</tr>
<tr>
<td>MALS, MALSF, SSALF, SSALS, SALS</td>
<td>¼ mile</td>
</tr>
</tbody>
</table>

(4) Sidestep minima (CAT C-D)

<table>
<thead>
<tr>
<th>Inoperative Component or Visual Aid</th>
<th>Increase Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALSF 1 & 2, MALSR, SSALR</td>
<td>½ mile</td>
</tr>
</tbody>
</table>

(5) All Approach Types, All lines of minima

<table>
<thead>
<tr>
<th>Inoperative Component or Visual Aid</th>
<th>Increase Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODALS (CAT A-B)</td>
<td>¼ mile</td>
</tr>
<tr>
<td>ODALS (CAT C-D)</td>
<td>½ mile</td>
</tr>
</tbody>
</table>
TERMINAL PROCEDURES

TERMS/LANDING MINIMA DATA

IFR LANDING MINIMA

The United States Standard for Terminal Instrument Procedures (TERPS) is the approved criteria for formulating instrument approach procedures. Landing minima are established for six aircraft approach categories (ABCDEF and COTPER).

In the absence of COPTER MINIMA, helicopters may use the CAT A minima of other procedures.

LANDING MINIMA FORMAT

In this example airport elevation is 1179, and runway touchdown zone elevation is 1152.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DA (RVR 1000’s of feet)</th>
<th>Visibility (Statute Miles)</th>
<th>Aircraft Approach Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS 27</td>
<td>1352/24</td>
<td>200</td>
<td>(200-1/2)</td>
</tr>
<tr>
<td>S-LOC 27</td>
<td>1440/24</td>
<td>288</td>
<td>(300-1/2)</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>1540-1</td>
<td>1640-1</td>
<td>1640-1/2</td>
</tr>
<tr>
<td></td>
<td>361 (400-1)</td>
<td>461 (500-1)</td>
<td>461 (500-1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>561 (600-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>HAA</th>
<th>MDA</th>
<th>Visibility in Statute Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>COTPER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COPTER MINIMA ONLY

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>H-176*</th>
<th>Visibility in Statute Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPTER</td>
<td>680-1/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>363</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(400-1)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The W symbol indicates outages of the WAAS vertical guidance may occur daily at this location due to initial system limitations. WAAS NOTAMS for vertical outages are not provided for this approach. Use LNAV minima for flight planning at these locations, whether as a destination or alternate. For flight operations at these locations, when the WAAS equipment is not operational, vertical guidance may be used to complete the approach using the displayed level of service. Should an outage occur during the procedure, reversion to LNAV minima may be required. As the WAAS coverage is expanded, the W will be removed.

RNAV minimums are dependent on navigation equipment capability, as stated in the applicable AFM, AFMS, or other FAA approved document. See AIM paragraph 5-4-5, AC 90-105 and AC 90-107 for detailed requirements for each line of minima.

COLD TEMPERATURE AIRPORTS

Note: A symbol indicates a cold temperature altitude correction is required at this airport when reported temperature is or below the published temperature. See the following Cold Temperature Error Table to make manual corrections. Advise ATC with altitude correction. Advising ATC with altitude corrections is not required in the final segment. See Aeronautical Information Manual (AIM), Chapter 7, for guidance and additional information. For a complete list, see the "Cold Temperature Airports" link under the Additional Resources header at the bottom of the following page:

http://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/dtpp/search/

COLD TEMPERATURE ERROR TABLE

<table>
<thead>
<tr>
<th>HEIGHT ABOVE AIRPORT IN FEET</th>
<th>REPORTED TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AT -20C</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>500</td>
<td>40</td>
</tr>
<tr>
<td>600</td>
<td>50</td>
</tr>
<tr>
<td>700</td>
<td>60</td>
</tr>
<tr>
<td>800</td>
<td>70</td>
</tr>
<tr>
<td>900</td>
<td>80</td>
</tr>
<tr>
<td>1000</td>
<td>90</td>
</tr>
<tr>
<td>1100</td>
<td>100</td>
</tr>
<tr>
<td>1200</td>
<td>110</td>
</tr>
<tr>
<td>1300</td>
<td>120</td>
</tr>
<tr>
<td>1400</td>
<td>130</td>
</tr>
<tr>
<td>1500</td>
<td>140</td>
</tr>
<tr>
<td>1600</td>
<td>150</td>
</tr>
<tr>
<td>1700</td>
<td>160</td>
</tr>
<tr>
<td>1800</td>
<td>170</td>
</tr>
<tr>
<td>1900</td>
<td>180</td>
</tr>
<tr>
<td>2000</td>
<td>190</td>
</tr>
<tr>
<td>2100</td>
<td>200</td>
</tr>
<tr>
<td>2200</td>
<td>210</td>
</tr>
<tr>
<td>2300</td>
<td>220</td>
</tr>
<tr>
<td>2400</td>
<td>230</td>
</tr>
<tr>
<td>2500</td>
<td>240</td>
</tr>
<tr>
<td>2600</td>
<td>250</td>
</tr>
<tr>
<td>2700</td>
<td>260</td>
</tr>
<tr>
<td>2800</td>
<td>270</td>
</tr>
<tr>
<td>2900</td>
<td>280</td>
</tr>
<tr>
<td>3000</td>
<td>290</td>
</tr>
<tr>
<td>3100</td>
<td>300</td>
</tr>
<tr>
<td>3200</td>
<td>310</td>
</tr>
<tr>
<td>3300</td>
<td>320</td>
</tr>
<tr>
<td>3400</td>
<td>330</td>
</tr>
<tr>
<td>3500</td>
<td>340</td>
</tr>
<tr>
<td>3600</td>
<td>350</td>
</tr>
<tr>
<td>3700</td>
<td>360</td>
</tr>
<tr>
<td>3800</td>
<td>370</td>
</tr>
<tr>
<td>3900</td>
<td>380</td>
</tr>
<tr>
<td>4000</td>
<td>390</td>
</tr>
<tr>
<td>4100</td>
<td>400</td>
</tr>
<tr>
<td>4200</td>
<td>410</td>
</tr>
<tr>
<td>4300</td>
<td>420</td>
</tr>
<tr>
<td>4400</td>
<td>430</td>
</tr>
<tr>
<td>4500</td>
<td>440</td>
</tr>
<tr>
<td>4600</td>
<td>450</td>
</tr>
<tr>
<td>4700</td>
<td>460</td>
</tr>
<tr>
<td>4800</td>
<td>470</td>
</tr>
<tr>
<td>4900</td>
<td>480</td>
</tr>
<tr>
<td>5000</td>
<td>490</td>
</tr>
</tbody>
</table>

AIRCRAFT APPROACH CATEGORIES

Aircraft approach categories indicate a grouping of aircraft based on a speed of VREF, if specified, or if VREF not specified, 1.3 VSO at the maximum certificated landing weight. VREF, VSO, and the maximum certificated landing weight are those values established for the aircraft by the certification authority of the country of registry. Helicopters are Category A aircraft. An aircraft shall be in only one category. When necessary to operate the aircraft at an airspeed in excess of the maximum airspeed of its certified aircraft approach category, pilots should use the applicable higher category minima. For additional options and to ensure the aircraft remains within protected airspace, consult the AIM. See following category limits:

MANEUVERING TABLE

<table>
<thead>
<tr>
<th>Approach Category</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (Knots)</td>
<td>0-90</td>
<td>91-120</td>
<td>121-140</td>
<td>141-165</td>
<td>Abv 165</td>
</tr>
</tbody>
</table>

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

TERMS/LANDING MINIMA DATA

CIRCLING APPROACH OBSTRUCTION PROTECTED AIRSPACE

The circling MDA provides vertical obstacle clearance during a circle-to-land maneuver. The circling MDA protected area extends from the threshold at each runway authorized for landing following a circle-to-land maneuver for a distance as shown in the tables below. The resultant arcs are then connected tangentially to define the protected area.

STANDARD CIRCLING APPROACH MANEUVERING RADIUS

Circling approach protected areas developed prior to late 2012 used the radius distances shown in the following table, expressed in nautical miles (NM), dependent on aircraft approach category. The approaches using standard circling approach areas can be identified by the absence of the \(\text{⪪} \) symbol on the circling line of minima.

<table>
<thead>
<tr>
<th>Circling MDA in feet MSL</th>
<th>Approach Category and Circling Radius (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAT A</td>
</tr>
<tr>
<td>All Altitudes</td>
<td>1.3</td>
</tr>
</tbody>
</table>

EXPANDED CIRCLING APPROACH MANEUVERING AIRSPACE RADIUS

Circling approach protected areas developed after late 2012 use the radius distance shown in the following table, expressed in nautical miles (NM), dependent on aircraft approach category, and the altitude of the circling MDA, which accounts for true airspeed increase with altitude. The approaches using expanded circling approach areas can be identified by the presence of the \(\text{⪪} \) symbol on the circling line of minima.

<table>
<thead>
<tr>
<th>Circling MDA in feet MSL</th>
<th>Approach Category and Circling Radius (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAT A</td>
</tr>
<tr>
<td>1000 or less</td>
<td>1.3</td>
</tr>
<tr>
<td>1001-3000</td>
<td>1.3</td>
</tr>
<tr>
<td>3001-5000</td>
<td>1.3</td>
</tr>
<tr>
<td>5001-7000</td>
<td>1.3</td>
</tr>
<tr>
<td>7001-9000</td>
<td>1.4</td>
</tr>
<tr>
<td>9001 and above</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Comparable Values of RVR and Visibility

The following table shall be used for converting RVR to ground or flight visibility. For converting RVR values that fall between listed values, use the next higher RVR value; do not interpolate. For example, when converting 4800 RVR, use 5000 RVR with the resultant visibility of 1 mile.

<table>
<thead>
<tr>
<th>RVR (feet)</th>
<th>Visibility (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>(%)</td>
</tr>
<tr>
<td>1800</td>
<td>(%)</td>
</tr>
<tr>
<td>2000</td>
<td>(%)</td>
</tr>
<tr>
<td>2200</td>
<td>(%)</td>
</tr>
</tbody>
</table>

RADAR MINIMA

<table>
<thead>
<tr>
<th>RWY</th>
<th>GP/TCH/RPI</th>
<th>CAT</th>
<th>DA/MDA-VIS</th>
<th>HAT</th>
<th>CEL-VIS</th>
<th>CAT</th>
<th>DA/MDA-VIS</th>
<th>HAT</th>
<th>CEL-VIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>10 25°/42/1000</td>
<td>ABCDE</td>
<td>195/16</td>
<td>100</td>
<td>(100-1)</td>
<td>DE</td>
<td>560/50</td>
<td>463</td>
<td>(500-1)</td>
</tr>
<tr>
<td></td>
<td>28 25°/48/1068</td>
<td>ABCDE</td>
<td>187/16</td>
<td>100</td>
<td>(100-1)</td>
<td>CDE</td>
<td>600/60</td>
<td>513</td>
<td>(600-1)</td>
</tr>
<tr>
<td>ASR</td>
<td>10 450/40</td>
<td>ABC</td>
<td>560/40</td>
<td>463</td>
<td>(500-1)</td>
<td>DE</td>
<td>560/50</td>
<td>463</td>
<td>(500-1)</td>
</tr>
<tr>
<td></td>
<td>28 600/50</td>
<td>AB</td>
<td>600/50</td>
<td>513</td>
<td>(600-1)</td>
<td>CDE</td>
<td>600/60</td>
<td>513</td>
<td>(600-1)</td>
</tr>
<tr>
<td>CIR</td>
<td>10 560-1</td>
<td>AB</td>
<td>560-1</td>
<td>463</td>
<td>(500-1)</td>
<td>CDE</td>
<td>560-1</td>
<td>463</td>
<td>(500-1)</td>
</tr>
<tr>
<td></td>
<td>28 600-1</td>
<td>AB</td>
<td>600-1</td>
<td>503</td>
<td>(600-1)</td>
<td>CDE</td>
<td>600-1</td>
<td>503</td>
<td>(600-1)</td>
</tr>
</tbody>
</table>

Radar Minima:
1. Minima shown are the lowest permitted by established criteria. Pilots should consult applicable directives for their category of aircraft.
2. The circling MDA and weather minima to be used are those for the runway to which the final approach is flown—not the landing runway. In the above RADAR MINIMA example, a category C aircraft flying a radial approach to runway 10, circling to land on runway 28, must use an MDA of 550 feet with weather minima of 500-1frac{1}{2}.

NOTE: Military RADAR MINIMA may be shown with communications symbology that indicates emergency frequency monitoring capability by the radar facility as follows:
- \(\text{⪪} \) VHF and UHF emergency frequencies monitored
- \(\text{⪪} \) VHF emergency frequency (121.5) monitored
- \(\text{⪪} \) UHF emergency frequency (243.0) monitored

Additionally, unmonitored frequencies which are available on request from the controlling agency may be annotated with an “x”.

AA: Alternate Minima not standard. Civil users refer to tabulation. USA/USN/USAF pilots refer to appropriate regulations.
NA: Alternate minima are Not Authorized due to unmonitored facility or absence of weather reporting service.

Airport is published in the Takeoff, Minimums, Obstacle Departure Procedures, and Diverse Vector Area (Radarcetectors) tabulation.

TERMS/LANDING MINIMA DATA
TERMINAL PROCEDURES

GENERAL INFORMATION

This publication is issued every 56 days and includes Standard Instrument Approach Procedures (SIAPs), Standard Instrument Departures (SIDs), Standard Terminal Arrivals (STARs), IFR Takeoff Minimums and (Obstacle) Departure Procedures (ODPs), IFR Alternate Minimums, and Radar Instrument Approach Minimums for use by civil and military aviation. The organization responsible for SIAPs, Radar Minimums, SIDs, STARs and graphic ODPs is identified in parentheses in the top margin of the procedure; e.g., (FAA), (FAA-O), (USA), (USAF), (USN). SIAPs with the (FAA) and (FAA-O) designation are regulated under 14 CFR, Part 97. SIAPs with the (FAA-O) designation have been developed under Other Transaction Agreement (OTA) by private providers and have been certified by the FAA. See 14 CFR, Part 91.175 (a) and the AIM for further details. 14 CFR, Part 91.175 (g) and the Special Notices section of the Chart Supplement contain information on civil operations at military airports.

The FAA uses an internal numbering system on all charts in the TPP. This Approach and Landing (AL) number is located on the top center margin of the chart followed by the organization responsible for the procedure in parentheses, e.g., AL-18 (FAA), AL-227 (USAF).

CHART CURRENCY INFORMATION

Date of Latest Revision 09365

The Date of Latest Revision identifies the Julian date the chart was added or last revised for any reason. The first two digits indicate the year, the last three digits indicate the day of the year (001 to 365/6) in which the latest revision of any kind has been made to the chart.

FAA Procedure Amendment Number
Orig 31DEC09
Amdt 2B 12MAR09
Procedure Amendment Effective Date

The FAA Procedure Amendment Number represents the most current amendment of a given procedure. The Procedure Amendment Effective Date represents the AIRAC cycle date on which the procedure amendment was incorporated into the chart. Updates to the amendment number & effective date represent procedural/criteria revisions to the charted procedure, e.g., course, fix, altitude, minima, etc. On Departure Procedures and Standard Terminal Arrivals, procedural revisions to the current chart are indicated by an upnumber to the procedure title with the procedure amendment effective date following. On Radar Minima, Takeoff Minimums and (Obstacle) Departure Procedures and Diverse Vector Areas, the FAA Procedure Amendment Number, Procedure Effective Date, and the Julian Date of Last Revision will be shown on the same line, e.g., AMDT 2 10DEC15 (15344).

MISCELLANEOUS

* Indicates a non-continuously operating facility, see Chart Supplement.

For Civil (FAA) instrument procedures, "RADAR REQUIRED" in the planview of the chart indicates that ATC radar must be available to assist the pilot when transitioning from the en route environment. "Radar required" in the pilot briefing portion of the chart indicates that ATC radar is required on portions of the procedure outside the final approach segment, including the missed approach. Some military procedures also have equipment requirements such as "Radar Required", but do not conform to the same charting application standards used by the FAA.

Distances are in nautical miles (except visibility in statute miles and Runway Visual Range in hundreds of feet). Runway dimensions are in feet. Elevations are in feet, Mean Sea Level (MSL). Ceilings are in feet above airport elevation. Radials/bearings/headings/courses are magnetic. Horizontal Datum: Unless otherwise noted on the chart, all coordinates are referenced to North American Datum 1983 (NAD 83), which for charting purposes is considered equivalent to World Geodetic System 1984 (WGS 84).

Terrain is scaled within the neat lines (planview boundaries) and does not accurately underline not-to-scale distance depictions or symbols.
STANDARD TERMINAL ARRIVALS AND DEPARTURE PROCEDURES

The use of the associated codified STAR/DP and transition identifiers are requested of users when filing flight plans online. It must be noted that when filing a STAR/DP with a transition, the first three coded characters of the STAR and the last three coded characters of the DP are replaced by the transition code. Examples: ACTON SIX ARRIVAL, file (AQN.AQN6); ACTON SIX ARRIVAL, EDNAS TRANSITION, file (EDNAS.AQN6). FREEHOLD THREE DEPARTURE, file (FREH3.RBV), FREEHOLD THREE DEPARTURE, ELWOOD CITY TRANSITION, file (FREH3.EWC).

PROCEDURE PBN/EQUIPMENT REQUIREMENTS

Users will begin to see Performance-Based Navigation (PBN) Requirements and Equipment Requirements on Instrument Approach Procedures (IAPs), RNAV STARs and RNAV DPs prominently displayed in separate, standardized notes boxes. For procedures with PBN elements, the PBN box will contain the procedure’s navigation specification(s); and, if required: specific sensors or infrastructure needed for the navigation solution; any additional or advanced functional requirements; the minimum Required Navigation Performance (RNP) value and any amplifying remarks. Items listed in this PBN box are REQUIRED for the procedure’s PBN elements. The Equipment Requirements Box will list non-PBN requirements. On charts with both PBN element and equipment requirements, the PBN requirements box will be listed first. The publication of these notes will continue incrementally until all charts have been amended to comply with the new standard.

IAP PBN/Equipment Requirements Notes Box

<table>
<thead>
<tr>
<th>PBN Requirements Box</th>
<th>From WINRZ, UBGE: RNAV-1 GPS, RNAV-1 GPS from MAP to YARKU. DME required for LOC only.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Requirements Box</td>
<td>- Circling to Rwy 25 NA at night. #For inop MALSR increase S-ILS 16R all cats visibility to 2½ SM.</td>
</tr>
</tbody>
</table>

RNAV STAR and DP PBN/Equipment Requirements Notes Box

<table>
<thead>
<tr>
<th>PBN Requirements Box</th>
<th>RNAV 1 - DME/DME/IRU or GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Requirements Box</td>
<td>RADAR required</td>
</tr>
</tbody>
</table>

PILOT CONTROLLED AIRPORT LIGHTING SYSTEMS

Available pilot controlled lighting (PCL) systems are indicated as follows:

1. Approach lighting systems that bear a system identification are symbolized using negative symbology, e.g., ∆, ○, ○.
2. Approach lighting systems that do not bear a system identification are indicated with a negative "∆" beside the name. A star (*) indicates non-standard PCL, consult Chart Supplement, e.g., ∆*

To activate lights, use frequency indicated in the communication section of the chart with a ∆ or the appropriate lighting system identification e.g., UNICOM 122.8 ∆, ○, ○.

KEY MIKE

<table>
<thead>
<tr>
<th>Function</th>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td></td>
<td>KEY MIKE</td>
</tr>
<tr>
<td>Highest intensity available</td>
<td>7 times within 5 seconds</td>
<td>Medium or lower intensity (Lower REIL or REIL-off)</td>
</tr>
<tr>
<td>Medium or lower intensity (Lower REIL or REIL-off)</td>
<td>5 times within 5 seconds</td>
<td>Lowest intensity available (Lower REIL or REIL-off)</td>
</tr>
<tr>
<td>Lowest intensity available (Lower REIL or REIL-off)</td>
<td>3 times within 5 seconds</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AAUP</td>
<td>Attention All Users Page</td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>Automatic Direction Finder</td>
<td></td>
</tr>
<tr>
<td>ADIZ</td>
<td>Air Defense Identification Zone</td>
<td></td>
</tr>
<tr>
<td>AFIS</td>
<td>Automatic Flight Information Service</td>
<td></td>
</tr>
<tr>
<td>ALS</td>
<td>Approach Light System</td>
<td></td>
</tr>
<tr>
<td>ALSF</td>
<td>Approach Light System with Sequenced Flashing Lights</td>
<td></td>
</tr>
<tr>
<td>AOB</td>
<td>At or Below</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Autopilot System</td>
<td></td>
</tr>
<tr>
<td>APCH</td>
<td>Approach</td>
<td></td>
</tr>
<tr>
<td>APP CON</td>
<td>Approach Control</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Authorization Required</td>
<td></td>
</tr>
<tr>
<td>ARR</td>
<td>Arrival</td>
<td></td>
</tr>
<tr>
<td>ASOS</td>
<td>Automated Surface Observing System</td>
<td></td>
</tr>
<tr>
<td>ASR/PAR</td>
<td>Published Radar Minimums at this Airport</td>
<td></td>
</tr>
<tr>
<td>ASSC</td>
<td>Airport Surface Surveillance Systems</td>
<td></td>
</tr>
<tr>
<td>ATIS</td>
<td>Automated Terminal Information Service</td>
<td></td>
</tr>
<tr>
<td>AUNICOM</td>
<td>Automated UNICOM</td>
<td></td>
</tr>
<tr>
<td>AWOS</td>
<td>Automated Weather Observing System</td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azimuth</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>Back Course</td>
<td></td>
</tr>
<tr>
<td>BND</td>
<td>Bound</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Circling</td>
<td></td>
</tr>
<tr>
<td>CAT</td>
<td>Category</td>
<td></td>
</tr>
<tr>
<td>CCW</td>
<td>Counter Clockwise</td>
<td></td>
</tr>
<tr>
<td>CDI</td>
<td>Course Deviation Indicator</td>
<td></td>
</tr>
<tr>
<td>Chain</td>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>CIFP</td>
<td>Coded Instrument Flight Procedures</td>
<td></td>
</tr>
<tr>
<td>CIR</td>
<td>Circling</td>
<td></td>
</tr>
<tr>
<td>CLNC DEL</td>
<td>Clearance Delivery</td>
<td></td>
</tr>
<tr>
<td>CNF</td>
<td>Computer Navigation Fix</td>
<td></td>
</tr>
<tr>
<td>CPDLC</td>
<td>Controller Pilot Data Link Communication</td>
<td></td>
</tr>
<tr>
<td>CTAF</td>
<td>Common Traffic Advisory Frequency</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Clockwise</td>
<td></td>
</tr>
<tr>
<td>D-ATIS</td>
<td>Digital-Automated Terminal Information Service</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>Decision Altitude</td>
<td></td>
</tr>
<tr>
<td>DER</td>
<td>Departure End of Runway</td>
<td></td>
</tr>
<tr>
<td>DH</td>
<td>Decision Height</td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>Distance Measuring Equipment</td>
<td></td>
</tr>
<tr>
<td>DTHR</td>
<td>Displaced Threshold</td>
<td></td>
</tr>
<tr>
<td>DVA</td>
<td>Diverse Vector Area Elevation</td>
<td></td>
</tr>
<tr>
<td>EMAS</td>
<td>Engineered Material Arresting System</td>
<td></td>
</tr>
<tr>
<td>FAF</td>
<td>Final Approach Fix</td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td>Flight Director System</td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>Fan Marker</td>
<td></td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
<td></td>
</tr>
<tr>
<td>GBAS</td>
<td>Ground Based Augmentation System</td>
<td></td>
</tr>
<tr>
<td>GCO</td>
<td>Ground Communications Outlet</td>
<td></td>
</tr>
<tr>
<td>GLS</td>
<td>Ground based Augmentation System Landing System Glidepath</td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>Glidepath</td>
<td></td>
</tr>
<tr>
<td>GPI</td>
<td>Ground Point of Interception Zone</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System Glide Slope</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>Glide Slope</td>
<td></td>
</tr>
<tr>
<td>HAA</td>
<td>Height above Airport</td>
<td></td>
</tr>
<tr>
<td>HAL</td>
<td>Height above Landing</td>
<td></td>
</tr>
<tr>
<td>HAT</td>
<td>Height above Touchdown</td>
<td></td>
</tr>
<tr>
<td>HATh</td>
<td>Height above Threshold</td>
<td></td>
</tr>
<tr>
<td>HCH</td>
<td>Heliport Crossing Height</td>
<td></td>
</tr>
<tr>
<td>HGS</td>
<td>Heads-up Guidance System</td>
<td></td>
</tr>
<tr>
<td>HIRL</td>
<td>High Intensity Runway Lights</td>
<td></td>
</tr>
<tr>
<td>HUD</td>
<td>Head-up Display</td>
<td></td>
</tr>
<tr>
<td>IAF</td>
<td>Initial Approach Fix</td>
<td></td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Fix</td>
<td></td>
</tr>
<tr>
<td>IM</td>
<td>Inner Marker</td>
<td></td>
</tr>
<tr>
<td>INOP</td>
<td>Inoperative</td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>Intersection</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Knots</td>
<td></td>
</tr>
<tr>
<td>KIAS</td>
<td>Knots Indicated Airspeed</td>
<td></td>
</tr>
<tr>
<td>LAAS</td>
<td>Local Area Augmentation System</td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>Localizer Type Directional Aid</td>
<td></td>
</tr>
<tr>
<td>Ldg</td>
<td>Landing</td>
<td></td>
</tr>
<tr>
<td>LIRL</td>
<td>Low Intensity Runway Lights</td>
<td></td>
</tr>
<tr>
<td>LNAV</td>
<td>Lateral Navigation</td>
<td></td>
</tr>
<tr>
<td>LOC</td>
<td>Localizer</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>Localizer Performance</td>
<td></td>
</tr>
<tr>
<td>LPV</td>
<td>Localizer Performance with Vertical Guidance</td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>Lead Radial. Provides at least 2 NM (Copter 1 NM) of lead to assist in turning onto the intermediate/final course.</td>
<td></td>
</tr>
<tr>
<td>MAA</td>
<td>Maximum Authorized Altitude</td>
<td></td>
</tr>
<tr>
<td>MAL</td>
<td>Medium Intensity Approach Light System</td>
<td></td>
</tr>
<tr>
<td>MALSF</td>
<td>Medium Intensity Approach Lighting System with Sequenced Flashers</td>
<td></td>
</tr>
<tr>
<td>MALSR</td>
<td>Medium Intensity Approach Light System with RAIL</td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>Missed Approach Point</td>
<td></td>
</tr>
<tr>
<td>MDA</td>
<td>Minimum Descent Altitude</td>
<td></td>
</tr>
<tr>
<td>MIRL</td>
<td>Minimum Intensity Runway Lights</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Middle Marker</td>
<td></td>
</tr>
<tr>
<td>MRA</td>
<td>Minimum Reception Altitude Not Applicable</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Not Authorized</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>Not Authorized</td>
<td></td>
</tr>
<tr>
<td>NDB</td>
<td>Non-directional Radio Beacon</td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Mile</td>
<td></td>
</tr>
<tr>
<td>NoPT</td>
<td>No Procedure Turn Required (Procedure Turn shall not be executed without ATC clearance)</td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODALS</td>
<td>Omnidirectional Approach Light System</td>
</tr>
<tr>
<td>ODP</td>
<td>Obstacle Departure Procedure</td>
</tr>
<tr>
<td>OM</td>
<td>Outer Marker</td>
</tr>
<tr>
<td>PAR</td>
<td>Precision Approach Radar</td>
</tr>
<tr>
<td>PDC</td>
<td>Pre-Departure Clearance</td>
</tr>
<tr>
<td>PRM</td>
<td>Precision Runway Monitor</td>
</tr>
<tr>
<td>R</td>
<td>Radial</td>
</tr>
<tr>
<td>RA</td>
<td>Radio Altimeter setting height</td>
</tr>
<tr>
<td>RAIL</td>
<td>Runway Alignment Indicator Lights</td>
</tr>
<tr>
<td>RCLS</td>
<td>Runway Centerline Light System</td>
</tr>
<tr>
<td>REIL</td>
<td>Runway End Identifier Lights</td>
</tr>
<tr>
<td>RF</td>
<td>Radius-to-Fix</td>
</tr>
<tr>
<td>RLLS</td>
<td>Runway Lead-in Light System</td>
</tr>
<tr>
<td>RNAV</td>
<td>Area Navigation</td>
</tr>
<tr>
<td>RNP</td>
<td>Required Performance Navigation</td>
</tr>
<tr>
<td>RPI</td>
<td>Runway Point of Intercept(ion)</td>
</tr>
<tr>
<td>RRL</td>
<td>Runway Remaining Lights</td>
</tr>
<tr>
<td>Rwy</td>
<td>Runway</td>
</tr>
<tr>
<td>RVR</td>
<td>Runway Visual Range</td>
</tr>
<tr>
<td>S</td>
<td>Straight-in</td>
</tr>
<tr>
<td>SALS</td>
<td>Short Approach Light System</td>
</tr>
<tr>
<td>SALSF</td>
<td>Short Approach Lighting System with Sequenced Flashing Lights</td>
</tr>
<tr>
<td>SSALF</td>
<td>Simplified Short Approach Lighting System with Sequenced Flashers</td>
</tr>
<tr>
<td>SSALR</td>
<td>Simplified Short Approach Light System with RAIL</td>
</tr>
<tr>
<td>SSALS</td>
<td>Simplified Short Approach Lighting System</td>
</tr>
<tr>
<td>SDF</td>
<td>Simplified Directional Facility</td>
</tr>
<tr>
<td>SM</td>
<td>Statute Mile</td>
</tr>
<tr>
<td>SOIA</td>
<td>Simultaneous Offset Instrument Approach</td>
</tr>
<tr>
<td>SR-SS</td>
<td>Sunrise-Sunset</td>
</tr>
<tr>
<td>TAA</td>
<td>Terminal Arrival Area</td>
</tr>
<tr>
<td>TAC</td>
<td>TACAN</td>
</tr>
<tr>
<td>TCH</td>
<td>Threshold Crossing Height (height in feet above ground level)</td>
</tr>
<tr>
<td>TDZ</td>
<td>Touchdown Zone</td>
</tr>
<tr>
<td>TDZE</td>
<td>Touchdown Zone Elevation</td>
</tr>
<tr>
<td>TDZ/CL</td>
<td>Touchdown Zone and Runway Centerline Lighting</td>
</tr>
<tr>
<td>TDZL</td>
<td>Touchdown Zone Lights</td>
</tr>
<tr>
<td>THR</td>
<td>Threshold</td>
</tr>
<tr>
<td>TODA</td>
<td>Takeoff Distance Available</td>
</tr>
<tr>
<td>TORA</td>
<td>Takeoff Run Available</td>
</tr>
<tr>
<td>TR</td>
<td>Track</td>
</tr>
<tr>
<td>VASI</td>
<td>Visual Approach Slope Indicator</td>
</tr>
<tr>
<td>VCOA</td>
<td>Visual Climb over Airport</td>
</tr>
<tr>
<td>VDP</td>
<td>Visual Descent Point</td>
</tr>
<tr>
<td>VGSI</td>
<td>Visual Glide Slope Indicator</td>
</tr>
<tr>
<td>VNAV</td>
<td>Vertical Navigation</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WP/WPT</td>
<td>Waypoint (RNAV)</td>
</tr>
</tbody>
</table>

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

INSTRUMENT APPROACH PROCEDURES (CHARTS)

PLANVIEW SYMBOLS

TERMINAL ROUTES
- Procedure Track
- Missed Approach
- Visual Flight Path
- Procedure Turn

165°
345°

3100 N/OPT 5.6 NM to GS Intcpt
0.45°

(14.2 to LOM)

2000

1.55°

(15.1)

Feeder Route
Mileage

HOLDING PATTERNS
- Missed Approach
- Hold-in-lieu of Procedure Turn
- HOLD 8000 Arrival

090°

090°

270°

090°

270°

4 NM

Mandatory Altitude
3000 Recommended Altitude

Minimum Altitude
5000 Mandatory Block

Maximum Altitude
3000 Altitude

INDICATED AIRSPEED
- 175 kts
- 120 kts
- 225 kts
- 180 kts

Mandatory Airspeed
Minimum Airspeed
Maximum Airspeed
Recommended Airspeed

RADIO AIDS TO NAVIGATION
- 110.1
- Underline indicates No Voice transmitted on this frequency
- VOR
- VORTAC
- TACAN
- VOR/DME
- DME
- NDB
- ND8/DME

- Marker Beacon
- Marker beacons that are not specifically part of the procedure.

- Right side shading: Front course, Left side shading: Back Course

- Locator (LOC/LOA) Course
- SDF Course
- LOC/DME

- LOC/LOA/SDF Transmitter (shown when installation is offset from its normal position off the end of the runway.)

- Primary NAVID with Coordinate Values
- Secondary NAVID

Primary NAVID
- LMA
- 114.5 LMA
- 512° 00.80’
- W77° 07.00’

Secondary NAVID
- LMA
- 248 NT

- VHF Paired Frequency

SCOTT
- Chan 59
- SKE (112.2)

FIXES/ATC REPORTING REQUIREMENTS
- Reporting Point
- Intersection
- WAYPOINT
- FLYOVER POINT
- MAP WP (Flyover)
- DME Distance
- AUSTRN INT
- ARC/DME/ RNAV Fix
- R-198
- LR-198
- LB-198

LEGEND 22139

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

LEGEND 22251
INSTRUMENT APPROACH PROCEDURES (CHARTS)

PROFILE VIEW

Three different methods are used to depict either electronic or vertical guidance: "GS", "GP", or "VDA".
1. "GS" indicates that an Instrument Landing System (ILS) electronic glide slope (a ground antenna) provides vertical guidance. The profile section of ILS procedures depict a GS angle and TCH in the following format: GS 3.00°. TCH 55
2. "GP" on RNAV procedures indicates that either electronic vertical guidance (via Wide Area Augmentation System - WAAS or Ground Based Augmentation System - GBAS) or barometric vertical guidance is provided. GLS and RNAV procedures with a published decision altitude (DA/H) depict a GP angle and TCH in the following format: GP 3.00°. TCH 50
3. An advisory vertical descent angle (VDA) is provided on non-vertically guided conventional procedures and RNAV procedures with only a minimum descent altitude (MDA) to assist in preventing controlled flight into terrain. On Civil (PAA) procedures, this information is placed above or below the procedure track following the fix it is based on. Absence of a VDA or a note that the VDA is not authorized indicates that the prescribed obstacle clearance surface is not cleared and the VDA must not be used below MDA. VDA is depicted in the following format: VDA 3.00°. TCH 55

On Caper procedures this is depicted in the following format: \(\text{VDA} \)

ILS or LOC APPROACH

RNAP and GLS PROCEDURES WITH VERTICAL GUIDANCE

Non-vertically guided conventional procedures and RNAV procedures with MDA only

Descent from Holding Pattern

RNP APPROACH WITH TF AND RF SEGMENTS

Legend 22251
TERMINAL PROCEDURES

INSTRUMENT APPROACH PROCEDURES (CHARTS)

AIRPORT DIAGRAM/AIRPORT SKETCH

Runways
Hard Surface
Other Than Hard Surface
Grass Runway
Concrete Runway
Wet Runway
Salt Runway
Obstacles

REFERENCE FEATURES
Displaced Threshold
Hat Spot
Runway Holding Position Markings
Buildings
24-Hour Self-Serve Fuel
Tanks
Obstructions
Airport Beacon
Runway Radar Reflectors
Bridges
Control Tower

Helicopter Alighting Areas

Negative Symbols used to identify Copter Procedures landing point

NOTE:
Landmark features depicted on Copter Approach insets and sketches are provided for visual reference only.

Runway TDZ elevation

Runway Slope

NOTE:
Runway Slope measured to midpoint on runways 8000 feet or longer.

U.S. Navy Optical Landing System (OLS) "OLS" location is shown because of its height of approximately 7 feet and proximity to edge of runway may create an obstruction for some types of aircraft.

Approach light symbols are shown in the Flight Information Handbook.

Airport diagram scales are variable.

True/magnetic North orientation may vary from diagram to diagram.

Coordinate values are shown in 1 or ½ minute increments. They are further broken down into 6 second ticks, within each 1 minute increments.

Positional accuracy within ±600 feet unless otherwise noted on the chart.

Runway length depicted is the physical length of the runway (end-to-end, including displaced thresholds if any) but excluding areas designated as stopways.

A [] symbol is shown to indicate runway declared distance information available, see appropriate Chart Supplement for distance information.

SCOPE
Airport diagrams are specifically designed to assist in the movement of ground traffic at locations with complex runway/taxiway configurations. Airport diagrams are not intended to be used for approach and landing or departure operations. For revisions to Airport Diagrams: Consult FAA Order 7910.4.

LEGEND

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

INSTRUMENT APPROACH PROCEDURES (CHARTS)
APPROACH LIGHTING SYSTEM - UNITED STATES

LEGEND 22195

Approach lighting and visual glide slope systems are indicated on the airport sketch by an identifier, e.g., A, O, etc.

A dot " • " portrays with approach lighting letter identifier indicates sequenced flashing lights (F) installed with the approach lighting system e.g., A. Negative symbology, e.g., O, O indicates Pilot Controlled Lighting (PCL).

CATEGORIES

CATEGORY I
APPROACH LIGHTING SYSTEM

1. ALSF-1

- TRAFFIC LIGHTS
- SEQUENCED FLASHING LIGHTS

(High Intensity)
LENGTH 2400/3000 FEET

CATEGORY II
APPROACH LIGHTING SYSTEM

2. ALSF-2

- TRAFFIC LIGHTS
- SEQUENCED FLASHING LIGHTS

(High Intensity)
LENGTH 2400/3000 FEET

NOTE: CIVIL ALSF-2 MAY BE OPERATED AS SSALR DURING FAVORABLE WEATHER CONDITIONS

RUNWAY TOUCHDOWN ZONE AND CENTERLINE LIGHTING SYSTEMS

- RUNWAY CENTERLINE LIGHTS
- SEQUENCED FLASHING LIGHTS FOR MALS/SSALF ONLY

LENGTH 1400 FEET

MEDIUM INTENSITY APPROACH LIGHTING SYSTEM with Runway Alignment Indicator Lights

- MALSR

- RUNWAY ZONE LIGHTS
- SEQUENCED FLASHING LIGHTS

LENGTH 2400 FEET

MEDIUM INTENSITY (MALS and MALSF) OR SIMPLIFIED SHORT (SSALS and SSALF) APPROACH LIGHTING SYSTEMS

- SALS/SALS

- SEQUENCED FLASHING LIGHTS FOR SALSF ONLY

(High Intensity)
LENGTH 1500 FEET

- SSALR

- RUNWAY ZONE LIGHTS
- SEQUENCED FLASHING LIGHTS

(High Intensity)
LENGTH 2400/3000 FEET

OMNIDIRECTIONAL APPROACH LIGHTING SYSTEM

- ODALS

- OMNIDIRECTIONAL FLASHING LIGHTS

LENGTH 1500 FEET

LEGEND 22195

PAC, 8 SEP 2022 to 3 NOV 2022
LEGEND 22195

INSTRUMENT APPROACH PROCEDURES (CHARTS)
APPROACH LIGHTING SYSTEM - UNITED STATES

Approach lighting and visual glide slope systems are indicated on the airport sketch by an identifier, PAPI or VASI. Negative symbology, e.g., 3 or 3, indicates Pilot Controlled Lighting (PCL).

P PRECISION APPROACH PATH INDICATOR
PAPI

Too low
Slightly low
On correct approach path
Slightly high
Too high

Legend: 0 White, # Red

4 VISUAL APPROACH SLOPE INDICATOR

VISUAL APPROACH SLOPE INDICATOR WITH STANDARD THRESHOLD CLEARANCE PROVIDED.
ALL LIGHTS WHITE — TOO HIGH
FAR LIGHTS RED, NEAR LIGHTS WHITE — ON GLIDE SLOPE
ALL LIGHTS RED — TOO LOW

VASI 2

36
Threshold

VASI 4

36
Threshold

VASI 12

36
Threshold

4 VISUAL APPROACH SLOPE INDICATOR

VASI

3-BAR, 6 OR 16 BOX, VISUAL APPROACH SLOPE INDICATOR THAT PROVIDES 2 GUIDE ANGLES AND 2 THRESHOLD CROSSING HEIGHTS.

VASI 6

36
Threshold

VASI 16

36
Threshold

4 PULSATING VISUAL APPROACH SLOPE INDICATOR

PVASI

Pulsating White
Steady White or Alternating Red/White
Above Glide Path
On Glide Path
Steadily Below Glide Path
Below Glide Path
Pulsating Red
Threshold

CAUTION: When viewing the pulsating visual approach slope indicators in the pulsating white or pulsating red sectors, it is possible to mistake this lighting aid for another aircraft or a ground vehicle. Pilots should exercise caution when using this type of system.

4 TRI-COLOR VISUAL APPROACH SLOPE INDICATOR

TRCV

Above Glide Path
On Glide Path
Green
Amber
Below Glide Path
Red

CAUTION: When the aircraft descends from green to red, the pilot may see a dark amber color during the transition from green to red.

4 ALIGNMENT OF ELEMENTS SYSTEMS

APAP

Painted panels which may be lighted at night. To use the system the pilot positions the aircraft so the elements are in alignment.
TERMINAL PROCEDURES

FREQ PAIRING

FREQUENCY PAIRING TABLE

<table>
<thead>
<tr>
<th>TACAN CHANNEL</th>
<th>VHF FREQUENCY</th>
<th>TACAN CHANNEL</th>
<th>VHF FREQUENCY</th>
<th>TACAN CHANNEL</th>
<th>VHF FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>17Y</td>
<td>108.05</td>
<td>40X</td>
<td>110.30</td>
<td>88Y</td>
<td>114.15</td>
</tr>
<tr>
<td>18X</td>
<td>108.10</td>
<td>40Y</td>
<td>110.35</td>
<td>89Y</td>
<td>114.25</td>
</tr>
<tr>
<td>18Y</td>
<td>108.15</td>
<td>41Y</td>
<td>110.45</td>
<td>90Y</td>
<td>114.35</td>
</tr>
<tr>
<td>19Y</td>
<td>108.25</td>
<td>42X</td>
<td>110.50</td>
<td>91Y</td>
<td>114.45</td>
</tr>
<tr>
<td>20X</td>
<td>108.30</td>
<td>42Y</td>
<td>110.55</td>
<td>92Y</td>
<td>114.55</td>
</tr>
<tr>
<td>20Y</td>
<td>108.35</td>
<td>43Y</td>
<td>110.65</td>
<td>93Y</td>
<td>114.65</td>
</tr>
<tr>
<td>21Y</td>
<td>108.45</td>
<td>44X</td>
<td>110.70</td>
<td>94Y</td>
<td>114.75</td>
</tr>
<tr>
<td>22X</td>
<td>108.50</td>
<td>44Y</td>
<td>110.75</td>
<td>95Y</td>
<td>114.85</td>
</tr>
<tr>
<td>22Y</td>
<td>108.55</td>
<td>45Y</td>
<td>110.85</td>
<td>96Y</td>
<td>114.95</td>
</tr>
<tr>
<td>23Y</td>
<td>108.65</td>
<td>46X</td>
<td>110.90</td>
<td>97Y</td>
<td>115.05</td>
</tr>
<tr>
<td>24X</td>
<td>108.70</td>
<td>46Y</td>
<td>110.95</td>
<td>98Y</td>
<td>115.15</td>
</tr>
<tr>
<td>24Y</td>
<td>108.75</td>
<td>47Y</td>
<td>111.05</td>
<td>99Y</td>
<td>115.25</td>
</tr>
<tr>
<td>25Y</td>
<td>108.85</td>
<td>48X</td>
<td>111.10</td>
<td>100Y</td>
<td>115.35</td>
</tr>
<tr>
<td>26X</td>
<td>108.90</td>
<td>48Y</td>
<td>111.15</td>
<td>101Y</td>
<td>115.45</td>
</tr>
<tr>
<td>26Y</td>
<td>108.95</td>
<td>49Y</td>
<td>111.25</td>
<td>102Y</td>
<td>115.55</td>
</tr>
<tr>
<td>27Y</td>
<td>109.05</td>
<td>50X</td>
<td>111.30</td>
<td>103Y</td>
<td>115.65</td>
</tr>
<tr>
<td>28X</td>
<td>109.10</td>
<td>50Y</td>
<td>111.35</td>
<td>104Y</td>
<td>115.75</td>
</tr>
<tr>
<td>28Y</td>
<td>109.15</td>
<td>51Y</td>
<td>111.45</td>
<td>105Y</td>
<td>115.85</td>
</tr>
<tr>
<td>29Y</td>
<td>109.25</td>
<td>52X</td>
<td>111.50</td>
<td>106Y</td>
<td>115.95</td>
</tr>
<tr>
<td>30X</td>
<td>109.30</td>
<td>52Y</td>
<td>111.55</td>
<td>107Y</td>
<td>116.05</td>
</tr>
<tr>
<td>30Y</td>
<td>109.35</td>
<td>53Y</td>
<td>111.65</td>
<td>108Y</td>
<td>116.15</td>
</tr>
<tr>
<td>31Y</td>
<td>109.45</td>
<td>54X</td>
<td>111.70</td>
<td>109Y</td>
<td>116.25</td>
</tr>
<tr>
<td>32X</td>
<td>109.50</td>
<td>54Y</td>
<td>111.75</td>
<td>110Y</td>
<td>116.35</td>
</tr>
<tr>
<td>32Y</td>
<td>109.55</td>
<td>55Y</td>
<td>111.85</td>
<td>111Y</td>
<td>116.45</td>
</tr>
<tr>
<td>33Y</td>
<td>109.65</td>
<td>56X</td>
<td>111.90</td>
<td>112Y</td>
<td>116.55</td>
</tr>
<tr>
<td>34X</td>
<td>109.70</td>
<td>56Y</td>
<td>111.95</td>
<td>113Y</td>
<td>116.65</td>
</tr>
<tr>
<td>34Y</td>
<td>109.75</td>
<td>80Y</td>
<td>113.35</td>
<td>114Y</td>
<td>116.75</td>
</tr>
<tr>
<td>35Y</td>
<td>109.85</td>
<td>81Y</td>
<td>113.45</td>
<td>115Y</td>
<td>116.85</td>
</tr>
<tr>
<td>36X</td>
<td>109.90</td>
<td>82Y</td>
<td>113.55</td>
<td>116Y</td>
<td>116.95</td>
</tr>
<tr>
<td>36Y</td>
<td>109.95</td>
<td>83Y</td>
<td>113.65</td>
<td>117Y</td>
<td>117.05</td>
</tr>
<tr>
<td>37Y</td>
<td>110.05</td>
<td>84Y</td>
<td>113.75</td>
<td>118Y</td>
<td>117.15</td>
</tr>
<tr>
<td>38X</td>
<td>110.10</td>
<td>85Y</td>
<td>113.85</td>
<td>119Y</td>
<td>117.25</td>
</tr>
<tr>
<td>38Y</td>
<td>110.15</td>
<td>86Y</td>
<td>113.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39Y</td>
<td>110.25</td>
<td>87Y</td>
<td>114.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See the Chart Supplement for a complete listing.
INDEX

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROC</th>
<th>SECT PG</th>
<th>NAME</th>
<th>PROC</th>
<th>SECT PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATA KABUA INTL</td>
<td>---SEE MAJURO ATOLL, MH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BABEL THUAP ISLAND PW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BABELTHUAP/KOROR(ROR)</td>
<td>TAKEOFF MINIMUMS</td>
<td></td>
<td></td>
<td>ALTERNATE MINIMUMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IAPS</td>
<td>RNAV (GPS) RWY 09</td>
<td></td>
<td>RNAV (GPS) RWY 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDB RWY 09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIRPORT DIAGRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BABELTHUAP/KOROR</td>
<td>---SEE BABELTHUAP ISLAND, PW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENJAMIN T AISACAN M AGLONA INTL</td>
<td>---SEE ROTA ISLAND, CQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUUK INTL</td>
<td>---SEE WENO ISLAND, FM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANIEL K INOUYE INTL</td>
<td>---SEE HONOLULU, HI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELLISON ONIZUKA KONA INTL AT KEAHOLE</td>
<td>---SEE KAILUA-KONA, HI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANCISCO C ADA/SAIPAN INTL</td>
<td>---SEE SAIPAN ISLAND, CQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUAM INTL</td>
<td>---SEE GUAM, GU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUAM INTL(GUM)</td>
<td>TAKEOFF MINIMUMS</td>
<td></td>
<td></td>
<td>ALTERNATE MINIMUMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IAPS</td>
<td>ILS OR LOC RWY 06L</td>
<td></td>
<td>RNAV (RNP) Z RWY 06L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV (RNP) Z RWY 06R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV (GPS) Y RWY 06L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV (GPS) Y RWY 06R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV (GPS) Z RWY 24L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV (GPS) Z RWY 24R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV (GPS) Y RWY 24L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV (GPS) Y RWY 24R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOR-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOR OR TACAN RWY 24R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDB RWY 24R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIRPORT DIAGRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANA, HI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANA(HNM)</td>
<td>TAKEOFF MINIMUMS</td>
<td></td>
<td></td>
<td>ALTERNATE MINIMUMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IAPS</td>
<td>RNAV (GPS) RWY 08</td>
<td></td>
<td>RNAV (GPS) RWY 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPS</td>
<td>PARIS FOUR (OBSTACLE) & PPKEO ONE (RNAV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HENDERSON FLD</td>
<td>---SEE MIDWAY ATOLL, QM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDEX

22251

PAC, 8 SEP 2022 to 3 NOV 2022
INDEX OF TERMINAL CHARTS AND MINIMUMS

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROC</th>
<th>SECT PG</th>
<th>NAME</th>
<th>PROC</th>
<th>SECT PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOLULU, HI</td>
<td></td>
<td></td>
<td>KAHULUI, HI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANIEL K INOUYE INTL(HNL)</td>
<td></td>
<td></td>
<td>KAHULUI(OGG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKEOFF MINIMUMS</td>
<td></td>
<td>L</td>
<td>TAKEOFF MINIMUMS</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>DIVERSE VECTOR AREA</td>
<td></td>
<td>L</td>
<td>DIVERSE VECTOR AREA</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>ALTERNATE MINIMUMS</td>
<td></td>
<td>M</td>
<td>ALTERNATE MINIMUMS</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>LAHSO</td>
<td></td>
<td>O</td>
<td>HOT SPOT</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>STARS BOOKE EIGHT</td>
<td></td>
<td>Z1</td>
<td>STARS CAMPS THREE</td>
<td></td>
<td>Z2</td>
</tr>
<tr>
<td>INOYI ONE (RNAV)</td>
<td></td>
<td>Z3</td>
<td>LAVAS ONE (RNAV)</td>
<td></td>
<td>Z11</td>
</tr>
<tr>
<td>JULLE FIVE</td>
<td></td>
<td>Z5</td>
<td>LNDHY ONE (RNAV)</td>
<td></td>
<td>Z12</td>
</tr>
<tr>
<td>KAENA TWO (RNAV)</td>
<td></td>
<td>Z6</td>
<td>IAPS ILS Y OR LOC Y RWY 02</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>KLANI THREE (RNAV)</td>
<td></td>
<td>Z9</td>
<td>ILS Z OR LOC Z RWY 02</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>MAGGI THREE</td>
<td></td>
<td>Z12</td>
<td>RNAV (RNP) Z RWY 02</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>MAKAH ONE (RNAV)</td>
<td></td>
<td>Z15</td>
<td>RNAV (GPS) RWY 20</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>OPCA FOUR</td>
<td></td>
<td>Z16</td>
<td>RNAV (GPS) RWY 23</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>SAKKI FIVE</td>
<td></td>
<td>Z17</td>
<td>RNAV (GPS) Y RWY 02</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>SHLAE ONE (RNAV)</td>
<td></td>
<td>Z19</td>
<td>VOR Z OR TACAN RWY 20</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>SYMIN ONE (RNAV)</td>
<td></td>
<td>Z20</td>
<td>VOR Y RWY 20</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>IAPS ILS YRW 08L</td>
<td></td>
<td>33</td>
<td>ND6 RWY 02</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>ILS Y RWY 04R</td>
<td></td>
<td>34</td>
<td>SMOKE STACK VISUAL RWY 02</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>ILS Z RWY 04R</td>
<td></td>
<td>35</td>
<td>DPS BEACH FOUR</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>RNAV (RNP) RWY 26L</td>
<td></td>
<td>36</td>
<td>MAIKA ONE (RNAV)</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>RNAV (RNP) Z RWY 04R</td>
<td></td>
<td>37</td>
<td>MAUI FIVE</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>RNAV (GPS) RWY 08L</td>
<td></td>
<td>38</td>
<td>NPLII TWO (RNAV)</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>RNAV (GPS) RWY 04L</td>
<td></td>
<td>39</td>
<td>ONOHI TWO</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>RNAV (GPS) Y RWY 04R</td>
<td></td>
<td>40</td>
<td>PUHEE ONE (RNAV)</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>RNAV (GPS) Y RWY 08L</td>
<td></td>
<td>41</td>
<td>STACEY TWO</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>LOC RWY 04R</td>
<td></td>
<td>42</td>
<td>SWEEP TWO</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>LOC RWY 08L</td>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDA RWY 26L</td>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR OR TACAN RWY 04R</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR OR TACAN-A</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR OR TACAN-B</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAHE POWER PLANT VISUAL RWY 22L</td>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAILAE GOLF COURSE VISUAL RWY 22L</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRPORT DIAGRAM</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPS HONOLULU TWO (OBSTACLE)</td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANZI ONE (RNAV)</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEAHI THREE</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEOLA THREE</td>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLOKAI FOUR</td>
<td></td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPILI THREE</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALAY THREE</td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIPLN ONE (RNAV)</td>
<td></td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAILUA-KONA, HI</td>
<td></td>
<td></td>
<td>KAILUA-KONA, HI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA)</td>
<td></td>
<td></td>
<td>ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKEOFF MINIMUMS</td>
<td></td>
<td>L</td>
<td>TAKEOFF MINIMUMS</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>DIVERSE VECTOR AREA</td>
<td></td>
<td>L</td>
<td>DIVERSE VECTOR AREA</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>ALTERNATE MINIMUMS</td>
<td></td>
<td>M</td>
<td>ALTERNATE MINIMUMS</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>HOT SPOT</td>
<td></td>
<td>P</td>
<td>HOT SPOT</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>STARS KAYAK SIX</td>
<td></td>
<td>Z7</td>
<td>VECKI NINE</td>
<td></td>
<td>Z21</td>
</tr>
<tr>
<td>IAPS ILS OR LOC RWY 17</td>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (RNP) Z RWY 17</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 35</td>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) Y RWY 17</td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC BC RWY 35</td>
<td></td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR OR TACAN RWY 17</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR OR TACAN RWY 35</td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRPORT DIAGRAM</td>
<td></td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPS AMERY FOUR</td>
<td></td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRISI TWO (RNAV)</td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONIZU ONE (RNAV)</td>
<td></td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| KALAELOA (JOHN RODGERS FLD) | | | KALAELOA (JOHN RODGERS FLD) | ||
| ---SEE KAPOLEI, HI | | | ---SEE KAPOLEI, HI | | |

KALAUPAPA, HI			KALAUPAPA, HI		
KALAUPAPA(LUP)			KALAUPAPA(LUP)		
TAKEOFF MINIMUMS		L	TAKEOFF MINIMUMS		L
IAPS RNAV (GPS)-A		95			
RNAV (GPS)-B		96			
DPS KALAUPAPA ONE (OBSTACLE)		97			

INDEX

22251

PC1

PAC, 8 SEP 2022 to 3 NOV 2022
INDEX

INDEX OF TERMINAL CHARTS AND MINIMUMS

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROC</th>
<th>SECT PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAMUELA, HI</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>WAI MEA-KOHALA(MUE)</td>
<td>RNAV</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>ILS OR LOC</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>RWY 03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>GWY 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOR/DME</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>RWY 04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOR/DME-A</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAPOLEI, HI</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>KALAELOA (JOHN RODGERS FLD)(JRF)</td>
<td>RNAV</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>ILS OR LOC</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>RWY 05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>RWY 04R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDB RWY 04R</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>AIRPORT DIAGRAM</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>DPS</td>
<td>JELIE ONE (RNAV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAUNAKAKAI, HI</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>MOLOKAI(MKK)</td>
<td>RNAV</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>VOR OR TACAN-A</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>AIRPORT DIAGRAM</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>DPS</td>
<td>KAUNAKAKAI ONE (OBSTACLE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLUSH TWO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HAPAI THREE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KALAE ONE (RNAV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAULA ONE (RNAV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOSRAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---SEE KOSRAE,FMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOSRAE,FMD</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>KOSRAE(TTK)</td>
<td>RNAV</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANAI CITY, HI</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>LANAI(LNY)</td>
<td>ILS OR LOC</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>RWY 03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>VOR OR TACAN OR GPS-A</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIHUE, HI</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>LIHUE(LIH)</td>
<td>ILS OR LOC</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>RWY 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>RWY 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>RWY 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>RWY 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>RWY 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOR/DME OR TACAN RWY 21</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>VOR/DME OR TACAN RWY 35</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJURO ATOLL, MH</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>AMATA KABUA INTL(MAJ)</td>
<td>RNAV</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>NDB RWY 07</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>NDB RWY 25</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDWAY ATOLL, QM</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>HENDERSON FLD(MDY)</td>
<td>RNAV</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>NDB RWY 06</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>NDB RWY 24</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLOKAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---SEE KAUNAKAKAI, HI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAGO PAGO, AS</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>PAGO PAGO INTL(PPG)</td>
<td>ILS OR LOC</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>RWY 05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>VOR OR TACAN-B</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POHNPUIE ISLAND,FM</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>POHNPUIE INTL(PNI)</td>
<td>RNAV</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>NDB-A</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROTA ISLAND,CQ</td>
<td>IAPS</td>
<td></td>
</tr>
<tr>
<td>BENJAMIN TAI SACAN MANGLONA INTL(GRO)</td>
<td>RNAV</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>RNAV</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>NDB RWY 09</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>NDB RWY 27</td>
<td>156</td>
</tr>
</tbody>
</table>

INDEX

22251
INDEX

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROC</th>
<th>SECT PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIPAN ISLAND, CQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANCISCO C ADA/SAIPAN INTL(GSN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKEOFF MINIMUMS</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>ALTERNATE MINIMUMS</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>IAPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 07</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 25</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 07</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 25</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 07</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>AIRPORT DIAGRAM</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>TINIAN ISLAND, CQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TINIAN INTL(TNI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKEOFF MINIMUMS</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>ALTERNATE MINIMUMS</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>IAPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 08</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 26</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 07</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>WAIMEA-KOHALA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WENO ISLAND, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUUK INTL(TKK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKEOFF MINIMUMS</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>ALTERNATE MINIMUMS</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>IAPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 04</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 22</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>NDB RWY 04</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>NDB RWY 22</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>YAP ISLAND, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAP INTL(T11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKEOFF MINIMUMS</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>ALTERNATE MINIMUMS</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>IAPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 07</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>RNAV (GPS) RWY 25</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>NDB/DME RWY 07</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>NDB/DME RWY 25</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>NDB RWY 07</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>NDB RWY 25</td>
<td>176</td>
<td></td>
</tr>
</tbody>
</table>

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

IFR TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

Civil Airports and Selected Military Airports

ALL USERS: Airports that have Departure Procedures (DPs) designed specifically to assist pilots in avoiding obstacles during the climb to the minimum enroute altitude, and/or airports that have civil IFR takeoff minimums other than standard, are listed below. Takeoff Minimums and Departure Procedures apply to all runways unless otherwise specified. An entry may also be listed that contains only Takeoff Obstacle Notes. Altitudes, unless otherwise indicated, are minimum altitudes in MSL.

DPs specifically designed for obstacle avoidance are referred to as Obstacle Departure Procedures (ODPs) and are textually described below, or published separately as a graphic procedure. If the ODP is published as a graphic procedure, its name will be listed below, and it can be found in either this volume (civil), or the applicable military volume, as appropriate. Users will recognize graphic obstacle DPs by the term “(OBSTACLE)” included in the procedure title; e.g., TETON TWO (OBSTACLE). If not specifically assigned an ODP, SID, or RADAR vector as part of an IFR clearance, an ODP may be required to be flown for obstacle clearance, even though not specifically stated in the IFR clearance. When doing so in this manner, ATC should be informed when the ODP being used contains a specified route to be flown, restrictions before turning, and/or altitude restrictions.

Some ODPs, which are established solely for obstacle avoidance, require a climb in visual conditions to cross the airport, a fix, or a NAVAID in a specified direction, at or above a specified altitude. These procedures are called Visual Climb Over Airport (VCOA). To ensure safe and efficient operations, the pilot must verbally request approval from ATC to fly the VCOA when requesting their IFR clearance.

At some locations where an ODP has been established, a diverse vector area (DVA) may be created to allow RADAR vectors to be used in lieu of an ODP. DVA information will state that headings will be as assigned by ATC and climb gradients, when applicable, will be published immediately following the specified departure procedure.

Graphic DPs designed by ATC to standardize traffic flows, ensure aircraft separation and enhance capacity are referred to as “Standard Instrument Departures (SIDs)”. SIDs also provide obstacle clearance and are published under the appropriate airport section. ATC clearance must be received prior to flying a SID.

CIVIL USERS NOTE: Title 14 Code of Federal Regulations Part 91 prescribes standard takeoff rules and establishes takeoff minimums for certain operators as follows: (1) For aircraft, other than helicopters, having two engines or less – one statute mile visibility. (2) For aircraft having more than two engines – one-half statute mile visibility. (3) For helicopters – one-half statute mile visibility. These standard minima apply in the absence of any different minima listed below.

MILITARY USERS NOTE: Civil (nonstandard) takeoff minima are published below. For military takeoff minima, refer to appropriate service directives.

BABELTHUAP ISLAND, PW

BABELTHUAP/KOROR (ROR) (PTRO)

AMDT 2 31DEC09 (21224) (FAA)

TAKEOFF MINIMUMS:

Rwy 27, 300-1/4 or std. w/min. climb of 320' per NM to 500.

DEPARTURE PROCEDURE:

Rwy 27, climb on heading 271° to 600 before turning right.

TAKEOFF OBSTACLE NOTES:

Rwy 9, trees beginning 19' from DER, 317' right of centerline, up to 26' AGL/188' MSL.

Tree 89' from DER, 271' left of centerline, 178' MSL.

Vegetation, trees beginning 107' from DER, 131' left of centerline, up to 187' MSL.

Tree 390' from DER, 320' right of centerline, 34' AGL/191' MSL.

Rwy 27, trees beginning 23' from DER, 296' right of centerline, up to 17' AGL/180' MSL.

Tree 238' from DER, 382' right of centerline, 184' MSL.

Trees beginning 439' from DER, 372' right of centerline, up to 46' AGL/206' MSL.

Tree 824' from DER, 465' left of centerline, 47' AGL/205' MSL.

Tree 1757' from DER, 258' right of centerline, 232' MSL.

Trees beginning 4512' from DER, 486' right of centerline, up to 356' MSL.

Tree 5708' from DER, 652' right of centerline, 43' AGL/371' MSL.

Tree 5736' from DER, 670' right of centerline, 363' MSL.
TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

GUAM, GU
GUAM INTL (GUM) (PGUM)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AAMD 1A 17JUN21 (21168) (FAA)

TAKEOFF MINIMUMS:
Rwy 6L, 400-1/2 or std. w/min. climb of 450' per NM to 800.
Rwy 6R, 400-1/2 or std. w/min. climb of 520' per NM to 900.
Rwy 24L, std. w/min. climb of 280' per NM to 1700.
Rwy 24R, std. w/min. climb of 280' per NM to 1700.

DEPARTURE PROCEDURE:
Rwy 6L/R, climb on heading 062° to 1100 before proceeding on course.

TAKEOFF OBSTACLE NOTES:
Rwy 6L, terrain abeam DER, 472' right of centerline, 307' MSL.
Vegetation 160' from DER, 366' left of centerline, 312' MSL.
Terrain 186' from DER, 304' right of centerline, 313' MSL.
Terrain 196' from DER, 448' right of centerline, 315' MSL.
Terrain 378' from DER, 333' left of centerline, 317' MSL.
Terrain beginning 426' from DER, 374' right of centerline, up to 326' MSL.
Trees beginning 467' from DER, 357' left of centerline, up to 348' MSL.
Terrain beginning 611' from DER, 430' right of centerline, up to 336' MSL.
Trees beginning 712' from DER, 377' left of centerline, up to 371' MSL.
Terrain beginning 768' from DER, 472' right of centerline, up to 344' MSL.
Pole, terrain beginning 885' from DER, 468' right of centerline, up to 358' MSL.
Trees beginning 1052' from DER, 490' left of centerline, up to 374' MSL.
Pole, fence beginning 1074' from DER, 617' right of centerline, up to 12' AGL/360' MSL.
Trees beginning 1194' from DER, 493' right of centerline, up to 385' MSL.
Trees beginning 1233' from DER, 411' left of centerline, up to 376' MSL.
Tree, pole, fence beginning 1328' from DER, 376' right of centerline, up to 390' MSL.
Trees beginning 1435' from DER, 613' left of centerline, up to 388' MSL.
Tree, fence beginning 1524' from DER, 533' right of centerline, up to 395' MSL.
Tree, fence, pole, building, terrain beginning 1570' from DER, 71' right of centerline, up to 397' MSL.
Tree, terrain beginning 1667' from DER, 79' left of centerline, up to 400' MSL.
Tree, terrain beginning 1879' from DER, 73' left of centerline, up to 401' MSL.
Tree, terrain, building, fence beginning 1988' from DER, 68' right of centerline, up to 413' MSL.
Tree, building, fence, pole beginning 2057' from DER, 340' right of centerline, up to 423' MSL.
Trees beginning 2123' from DER, 329' left of centerline, up to 405' MSL.
Trees beginning 2236' from DER, 334' left of centerline, up to 409' MSL.
Tree, building, fence, pole beginning 2306' from DER, 343' right of centerline, up to 431' MSL.
Trees beginning 2479' from DER, 359' left of centerline, up to 414' MSL.
Trees beginning 2702' from DER, 375' left of centerline, up to 419' MSL.
Tree, building, fence, pole beginning 2786' from DER, 367' right of centerline, up to 433' MSL.
Tree 2898' from DER, 1153' right of centerline, 435' MSL.
Tree, building beginning 2918' from DER, 497' right of centerline, up to 437' MSL.
Trees beginning 2920' from DER, 370' left of centerline, up to 427' MSL.
Pole, tree, building, fence, vehicle on road, tank, vegetation beginning 2933' from DER, 2' right of centerline, up to 67' AGL/469' MSL.
Tree, vegetation, pole beginning 3137' from DER, 15' left of centerline, up to 434' MSL.
Pole, tree beginning 3771' from DER, 22' left of centerline, up to 86' AGL/436' MSL.
Tree, fence, pole, building beginning 4888' from DER, 1023' right of centerline, up to 471' MSL.
Tree, pole beginning 5042' from DER, 255' right of centerline, up to 481' MSL.
Tree, pole beginning 5206' from DER, 266' right of centerline, up to 34' AGL/516' MSL.
Tree, building, fence beginning 5404' from DER, 375' right of centerline, up to 522' MSL.
Tree, pole beginning 5732' from DER, 1535' right of centerline, up to 555' MSL.
Tree, building beginning 5924' from DER, 1631' right of centerline, up to 559' MSL.
Trees beginning 1 NM from DER, 1820' right of centerline, up to 567' MSL.
Trees beginning 1.1 NM from DER, 897' right of centerline, up to 616' MSL.
Tree, vegetation beginning 1.4 NM from DER, 1777' right of centerline, 534' MSL.
Rwy 6R, lighting 10' from DER, 160' left of centerline, 1' AGL/303' MSL.
Sign 60' from DER, 280' left of centerline, 3' AGL/304' MSL.
Trees beginning 140' from DER, 460' right of centerline, up to 378' MSL.
Trees beginning 725' from DER, 465' right of centerline, up to 384' MSL.
Tree, pole beginning 952' from DER, 276' right of centerline, up to 390' MSL.
Trees beginning 1080' from DER, 449' right of centerline, up to 407' MSL.
Tree, pole beginning 1279' from DER, 471' right of centerline, up to 410' MSL.
Trees beginning 1472' from DER, 539' right of centerline, up to 411' MSL.
Tree 1637' from DER, 723' right of centerline, 421' MSL.
Tree, pole, building, terrain beginning 1653' from DER, on centerline, up to 423' MSL.
Fence beginning 1885' from DER, 23' left of centerline, up to 9' AGL/358' MSL.
Pole, fence beginning 2074' from DER, 21' left of centerline, up to 12' AGL/360' MSL.
Tree, pole, fence beginning 2194' from DER, 12' left of centerline, up to 385' MSL.
Tree, fence, pole beginning 2328' from DER, 2' left of centerline, up to 390' MSL.
Tree 2524' from DER, 166' left of centerline, 395' MSL.
Tree, fence beginning 2570' from DER, 10' left of centerline, up to 397' MSL.
Building, fence, tree, pole beginning 3076' from DER, 45' right of centerline, up to 20' AGL/426' MSL.

CONT

TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

L2 PAC 8 SEP 2022 to 3 NOV 2022
GUAM, GU (CON’T)
GUAM INTL (GUM) (PGUM) (CON’T)

Rwy 6R (CON’T), tree 3200’ from DER, 1029’ left of centerline, 398’ MSL.
Building, fence, tree, pole beginning 3208’ from DER, 57’ right of centerline, up to 29’ AGL/435’ MSL.
Tree, fence beginning 3214’ from DER, 1’ left of centerline, up to 405’ MSL.
Tree, building beginning 3227’ from DER, 135’ right of centerline, up to 437’ MSL.
Tree 3343’ from DER, 1034’ left of centerline, 409’ MSL.
Pole, building, fence, tree beginning 3360’ from DER, 4’ right of centerline, up to 76’ AGL/482’ MSL.
Trees beginning 3431’ from DER, 220’ left of centerline, up to 415’ MSL.
Trees beginning 3525’ from DER, 60’ left of centerline, up to 417’ MSL.
Pole, building, tree, fence, vehicle on road, tank beginning 3571’ from DER, 19’ right of centerline, up to 81’ AGL/486’ MSL.
Tree 3609’ from DER, 339’ left of centerline, 421’ MSL.

Trees beginning 3616’ from DER, 57’ left of centerline, up to 425’ MSL.
Trees beginning 3920’ from DER, 69’ left of centerline, up to 427’ MSL.

Trees beginning 4039’ from DER, 37’ left of centerline, up to 432’ MSL.

Trees beginning 4137’ from DER, 65’ left of centerline, up to 434’ MSL.

Tree, tank, building, pole, vehicle on road beginning 4403’ from DER, 55’ right of centerline, up to 487’ MSL.

Tree, pole beginning 4427’ from DER, 42’ left of centerline, up to 446’ MSL.

Tree, building beginning 4606’ from DER, 292’ right of centerline, up to 501’ MSL.

Tree, building, pole beginning 4676’ from DER, 152’ right of centerline, up to 514’ MSL.

Tree, pole, building beginning 4868’ from DER, 63’ right of centerline, up to 534’ MSL.

Tree, building, pole beginning 5057’ from DER, 64’ right of centerline, up to 548’ MSL.

Tree, building beginning 5287’ from DER, 54’ right of centerline, up to 556’ MSL.

Tree, pole, building beginning 5502’ from DER, 581’ right of centerline, up to 569’ MSL.

Tree, pole beginning 5680’ from DER, 843’ right of centerline, up to 611’ MSL.

Trees beginning 5814’ from DER, 698’ right of centerline, up to 636’ MSL.

Trees beginning 5965’ from DER, 616’ right of centerline, up to 660’ MSL.

Building, pole, tree beginning 1 NM from DER, 488’ right of centerline, up to 89’ AGL/700’ MSL.

Tree 1.4 NM from DER, 2200’ right of centerline, 521’ MSL.

Rwy 24L, lighting 10’ from DER, 84’ right of centerline, 2’ AGL/233’ MSL.
Lighting 11’ from DER, 4’ left of centerline, 1’ AGL/232’ MSL.
Sign 58’ from DER, 416’ right of centerline, 3’ AGL/239’ MSL.

Tree 1415’ from DER, 365’ left of centerline, 269’ MSL.

Tree 1510’ from DER, 405’ left of centerline, 270’ MSL.

Tree 1578’ from DER, 334’ left of centerline, 273’ MSL.

Rwy 24R, lighting 8’ from DER, 2’ right of centerline, 2’ AGL/235’ MSL.

HANA, HI
HANA (HNM) (PHHN)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
ORIG 01SEP05 (05244) (FAA)
DEPARTURE PROCEDURE:
Use LINDBERG DEPARTURE.

HILO, HI
HILO INTL (ITO) (PHTO)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 6 22DEC05 (05356) (FAA)
DEPARTURE PROCEDURE:
Use PARIS DEPARTURE.

DIVERSE VECTOR AREA (RADAR VECTORS)
AMDT 1 26MAY16 (16147) (FAA)

Rwys 3, 8, heading as assigned by ATC.

Rwy 21, heading as assigned by ATC; requires minimum climb of 300’ per NM to 1300.

Rwy 26, heading as assigned by ATC; requires minimum climb of 420’ per NM to 2800.

HONOLULU, HI
DANIEL K INOUYE INTL (HNL) (PHNL)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 8B 08NOV18 (18312) (FAA)
DEPARTURE PROCEDURE:
Use HONOLULU DEPARTURE.

TAKEOFF OBSTACLE NOTES:

Rwy 4L, multiple lights beginning 630’ from DER, 236’ left of centerline, 102’ right of centerline, up to 84’ AGL/92’ MSL.
Light on building 689’ from DER, 384’ left of centerline, 29’ AGL/37’ MSL.

Stack on building 2488’ from DER, 219’ right of centerline 72’ AGL/80’ MSL.

Multiple trees beginning 1253’ from DER, 209’ left of centerline, 935’ right of centerline, up to 64’ AGL/72’ MSL.

Bush 450’ from DER, 234’ left of centerline, 14’ AGL/22’ MSL.

Rwy 4R, stack on building, 2442’ from DER, 263’ left of centerline, 72’ AGL/80’ MSL.

Multiple trees beginning 1206’ from DER, 711’ left of centerline, 433’ right of centerline, up to 64’ AGL/72’ MSL.

Multiple lights beginning 1072’ from DER, 399’ left of centerline, 504’ right of centerline, up to 36’ AGL/44’ MSL.

Pole 2110’ from DER, 951’ left of centerline, 59’ AGL/67’ MSL.

CON’T
TERMINAL PROCEDURES

HONOLULU, HI (CON’T)
 DANI N K INOUEY INTL (HNL) (PHNL) (CON’T)
 Ry W22L, multiple bushes beginning 265’ from DER, 396’ right of centerline, up to 17’ AGL/31’ MSL.
 Tree 1065’ from DER, 499’ right of centerline, 30’ AGL/38’ MSL.
 Ry W22R, rod on OL ASR 1451’ from DER, 827’ right of centerline, 76’ AGL/84’ MSL.
 Tree 853’ from DER, 308’ right of centerline, 43’ AGL/51’ MSL.
 Ry W26L, ship 1.1 NM from DER, on centerline, 208’ AGL/208’ MSL.
 Ry W26R, multiple light poles beginning 2120’ from DER, 813’ right of centerline, up to 105’ AGL/111’ MSL.

DIVERSE VECTOR AREA (RADAR VECTORS)
AMDT 2 25FEB21 (21056) (FAA)
 Rwys 4L/R, heading as assigned by ATC; requires min. climb of 490’ per NM to 2100, do not exceed 180K until established on assigned heading.
 Ry W8L, heading as assigned by ATC; requires min. climb of 360’ per NM to 1700.
 Ry W8R, heading as assigned by ATC; requires min. climb of 305’ per NM to 500.
 Rwys 22L/R, heading as assigned by ATC; requires min. climb of 320’ per NM to 3700.
 Ry W26L, heading as assigned by ATC; requires min. climb of 430’ per NM to 4400.

KAHULUI, HI

KAHULUI (OGG) (PHOG)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 7 29MAY14 (14149) (FAA)
TAKEOFF MINIMUMS:
 Ry W23, NA-ATC.
 DEPARTURE PROCEDURE:
 Ry W2, climb on a heading 316° CW 052° from DER to 10600 before proceeding on course.
 Ry W5, climb on a heading 312° CW 040° from DER to 10700 before proceeding on course.
 Ry W20, climb on heading 185° from DER to 11000 before proceeding on course.
TAKEOFF OBSTACLE NOTES:
 Ry W2, bush and trees beginning 190’ from DER, 363’ left of centerline, up to 60’ AGL/79’ MSL.
 Bushes and obstruction light on building beginning 339’ from DER, 289’ right of centerline, up to 20’ AGL/25’ MSL.
 Ry W5, tree 2359’ from DER, 512’ left of centerline, 56’ AGL/75’ MSL.
 Fence 20’ from DER, 304’ right of centerline, 11’ AGL/31’ MSL.
 Bushes, trees and fence beginning 228’ from DER, 300’ right of centerline, up to 76’ AGL/95’ MSL.

DIVERSE VECTOR AREA (RADAR VECTORS)
AMDT 1 26MAY16 (16147) (FAA)
 Rwys 2, 5, 20, heading as assigned by ATC.

KAILUA-KONA, HI

ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 5A 29MAR18 (18088) (FAA)
DEPARTURE PROCEDURE:
 Ry W17, climb on heading 174° to 500 then climbing right turn heading 357° and KOA R-327 to MYNAH INT for assigned route.
 Ry W35, eastbound climb on heading 354° to intercept MUE R-246 for assigned route; northwest bound climb heading 354° to 500 then climbing left turn to assigned route.
TAKEOFF OBSTACLE NOTES:
 Ry W17, obstruction light on AMOM at DER, 350’ right of centerline, 25’ AGL/62’ MSL.
 Ry W35, tree 1606’ from DER, 7211’ right of centerline, 15’ AGL/94’ MSL.

DIVERSE VECTOR AREA (RADAR VECTORS)
AMDT 1 15OCT15 (15288) (FAA)
 Rwys 17, 35, heading as assigned by ATC.

KALAUPAPA, HI

KALAUPAPA (LUP) (PHLU)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
ORIG 10MAR11 (11069) (FAA)
DEPARTURE PROCEDURE:
 Use KALAUPAPA ONE DEPARTURE.
TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

KAMUELA, HI
WAIMEA-KOHALA (MUE) (PHMU)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 1 17MAR05 (05076) (FAA)
TAKEOFF MINIMUMS:
Rwy 4, 400-2 or std. with a min. climb of 240' per NM to 3100.
DEPARTURE PROCEDURE:
Rwy 4, climb via heading 041° to 3100 then climbing right turn via heading 080° and MUE VOR/DME R-057 to 6000 to VELLA INT, then as assigned.
Rwy 22, climb via heading 233° and MUE VOR/DME R-234 to 5000 to JASON INT, then as assigned.
TAKEOFF OBSTACLE NOTES:
Rwy 4, windsock 158' from DER, 299' right of centerline, 25' AGL/2702' MSL. Tree 5200' from DER, 179' right of centerline, 50' AGL/2817' MSL. Tree 5331' from DER, 110' left of centerline, 50' AGL/2829' MSL. Tree 1.3 NM from DER, 739' right of centerline, 50' AGL/2864' MSL. Tree 1.3 NM from DER, 1741' left of centerline, 50' AGL/2889' MSL. Antenna 1.8 NM from DER, 1094' left of centerline 152' AGL/2992' MSL. Rising terrain beginning 1.5 NM from DER, 3.9 NM left of centerline, up to 13796' MSL.

KAPOLEI, OAHU ISLAND, HI
KALAELOA (JOHN RODGERS FLD) (JRF) (PHJR)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
ORIG 22OCT09 (21112) (FAA)
DEPARTURE PROCEDURE:
DME required.
Rwys 4L, 4R, 11, climb heading 200° to intercept HNL VORTAC R-241 to GECKO/HNL 22.4 DME before proceeding on course.
Rwys 22L, 22R, climb heading 224° to intercept HNL VORTAC R-241 to GECKO/HNL 22.4 DME before proceeding on course.
Rwy 29, climb heading 210° to intercept HNL VORTAC R-241 to GECKO/HNL 22.4 DME before proceeding on course.
TAKEOFF OBSTACLE NOTES:
Rwy 11, tree 1533' from DER, 831' left of centerline, 60' AGL/70' MSL.
Rwy 10, vehicle 305' from DER, 195' left of centerline, 15' AGL/26' MSL.
Pole 1058' from DER, 124' left of centerline, 20' AGL/2683' MSL.
Rapidly rising terrain beginning 1.5 NM from DER, 4209' left of centerline, up to 5513' MSL.

KAUNAKAKAI, HI
MOLOKAI (MKK) (PHMK)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 6 19MAY14 (14149) (FAA)
DEPARTURE PROCEDURE:
Use KAUNAKAKAI DEPARTURE.

DIVERSE VECTOR AREA (RADAR VECTORS)
AMDT 1 15OCT15 (15288) (FAA)
Rwy 17, heading as assigned by ATC.
Rwy 23, heading as assigned by ATC; requires minimum climb of 460' per NM to 2000.

KOSRAE, FM
KOSRAE (TTK) (PTSA)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
ORIG-A 12MAR09 (09071) (FAA)
CAUTION: Ships with masts to 200' traverse harbor entrance located on west side of runway.
DEPARTURE PROCEDURE:
Rwy 5, left turn.
Rwy 23, right turn, climb to 2000 or above before turning east.
TERMINAL PROCEDURES

L6

TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

LANAI CITY, HI
LANAI (LNY) (PHNY)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 5 27AUG09 (09239) (FAA)
TAKEOFF MINIMUMS:
Rwy 3, 400-1 or std. w/min. climb of 370' per NM to 2700 or 2500-3 for climb in visual conditions.

DEPARTURE PROCEDURE:
Rwy 3, climb heading 033° to 1720 before turning left. Climb heading 300° or 180° to intercept route or airway, then continue as cleared. Maintain maximum 210 kts until turn is completed or for climb in visual conditions cross LNY VORTAC eastbound at or above 3700.
Rwy 21, climb heading 213° to assigned altitude. Eastbound - climb westbound to cross LNY VORTAC eastbound at or above 2700 and climb as cleared. Westbound - climb direct LNY VORTAC then via assigned route.

TAKEOFF OBSTACLE NOTES:
Rwy 3, multiple poles, trees, and terrain beginning 2108’ from DER, 1011’ left of centerline, up to 200’ AGL/2202’ MSL.
Rwy 21, lighted windsock 8’ from DER, 191’ right of centerline, 30’ AGL/1323’ MSL.

LIHUE, HI
LIHUE (LIH) (PHLI)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
AMDT 8 05OCT00 (00279) (FAA)
TAKEOFF MINIMUMS:
Rwy 21, 2400-3. Use DIANE DEPARTURE PROCEDURE.

DEPARTURE PROCEDURE:
Rwys 3, 17, heading as assigned by ATC.
Rwy 17, to V15, climb runway heading to 500 then climbing left turn, heading 125°, then as assigned. To LIH-150, climb runway heading to 500 then climbing left turn, heading 120°, then as assigned.
Rwy 21, to V15, climb runway heading to 550 then climbing left turn, heading 090°, to intercept LIH R-110, maintain 5000, direct BOOKE INT or as assigned. To LIH-148, climb runway heading to 650, then climbing left turn, heading 120°, to intercept LIH R-148, maintain 3000, direct NAPUA INT or as assigned.

DIVERSE VECTOR AREA (RADAR VECTORS)
AMDT 1 15OCT15 (15288) (FAA)
Rwys 3, 17, heading as assigned by ATC.
Rwy 21, heading as assigned by ATC; requires minimum climb of 400’ per NM to 700.

MAJURO ATOLL, MH
AMATA KABUA INTL (MAJ) (PKMJ)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
ORIG 08APR10 (21224) (FAA)
TAKEOFF OBSTACLE NOTES:
Rwy 7, antenna on building 215’ from DER, 446’ left of centerline, 48” AGL/54” MSL.
Obstruction light on AMOM 44’ from DER, 269’ left of centerline, 33” AGL/39” MSL.
Obstruction light on WSK 10’ from DER, 245’ right of centerline, 23” AGL/29” MSL.
Tree 934’ from DER, 243’ left of centerline, 39” AGL/45” MSL.
Bush 555’ from DER, 187’ right of centerline, 23” AGL/29” MSL.
Rwy 25, obstructions light on WSK 11’ from DER, 246’ left of centerline, 23” AGL/29” MSL.
Post 689’ from DER, 360’ left of centerline, 15” AGL/21” MSL.
Tree 986’ from DER, 395’ left of centerline, 31” AGL/37” MSL.
Tree 563’ from DER, 5’ right of centerline, 20” AGL/26” MSL.
Bushes beginning 207’ from DER, from 124’ left to 207’ right of centerline, up to 14” AGL/20” MSL.
Vehicle on roadway 130’ from DER, 241’ right of centerline, 15” AGL/20” MSL.

PAGO PAGO, AS
PAGO PAGO INTL (PPG) (NSTU)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES
ORIG-A 12MAR09 (09071) (FAA)
TAKEOFF OBSTACLE NOTES:
Rwy 23, std. w/min. climb of 320’ per NM to 800, or 2700-3 for climb in visual conditions.
Rwy 26, NA-obstacles.

DEPARTURE PROCEDURE:
Rwys 5, 8, climbing right turn southbound between TUT R-090 clockwise to R-180 to 2800, then proceed on course.
Rwy 23, climbing left turn heading 150° southbound between TUT R-090 clockwise to R-180 to 2800, then proceed on course. For climb in visual conditions: cross Pago Pago Intl Airport at or above 2600 before proceeding on course.

TAKEOFF OBSTACLE NOTES:
Rwy 5, bush 1’ from DER, 237’ right of centerline, 3” AGL/12” MSL.
Bush 379’ from DER, 362’ left of centerline, 14” AGL/23” MSL.
Ship 998’ from DER, 57’ right of centerline, 150” AGL/150” MSL.
Rwy 8, bush 889’ from DER, 360’ left of centerline, 15” AGL/23” MSL.
Ship 1435’ from DER, 304’ left of centerline, 150” AGL/150” MSL.

CON’T
TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

PAGO PAGO, AS (CON’T)

PAGO PAGO INTL (PPG) (NSTU) (CON’T)

- Rwy 23, multiple trees beginning 352’ from DER, 173’ left of centerline, up to 20’ AGL/132’ MSL.
- Multiple trees beginning 681’ from DER, 298’ right of centerline, up to 20’ AGL/172’ MSL.
- Multiple trees and poles beginning 1.6 NM from DER, 38’ right of centerline, up to 367’ AGL/554’ MSL.
- Tree 2.3 NM from DER, 2126’ left of centerline, 20’ AGL/387’ MSL.

POHNPEI ISLAND, FM

POHNPEI INTL (PNI) (PTPN)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 3 27APR17 (17117) (FAA)

TAKEOFF MINIMUMS:

- Rwy 27, 300-1½ or std. w/min. climb of 215’ per NM to 300, or alternatively, with standard takeoff minimums and a normal 200’/NM climb gradient, takeoff must occur no later than 1400’ prior to DER.

DEPARTURE PROCEDURE:

- Rwy 9, Climb on a heading between 264° CW 083° from DER to 2600 before proceeding on course.
- Rwy 27, Climb on a heading between 264° CW 083° from DER to 2600 before proceeding on course.

TAKEOFF OBSTACLE NOTES:

- Rwy 27, fence 92’ from DER, left to right of centerline, up to 9’ AGL/15’ MSL.
- Tree 1.2 NM from DER, 1175’ left of centerline, 62’ AGL/203’ MSL. CAUTION: Rwy 27, ships with maximum height of 150’ MSL may traverse Pohnpei channel 400’ off DER, closing airport at times.

ROTA ISLAND, CQ

BENJAMIN TAISACAN MANGLONA INTL (GRO) (PGRO)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 2 06FEB14 (14037) (FAA)

DEPARTURE PROCEDURE:

- Rwy 9, climb heading 090° to 1400 before turning.
- Rwy 27, climb heading 270° to 2200 before turning southbound.

TAKEOFF OBSTACLE NOTES:

- Rwy 9, tree 514’ from DER, 418’ left of centerline, up to 30’ AGL/638’ MSL.
- Rwy 27, tree 1203’ from DER, 581’ left of centerline, up to 30’ AGL/618’ MSL.

SAIPAN ISLAND, CQ

FRANCISCO C ADA/SAIPAN INTL (GSN) (PGSN)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

ORIG-A 12MAR09 (09071) (FAA)

DEPARTURE PROCEDURE:

- Rwys 7, 25, climb on runway heading to 1600 before climbing on course.

TINIAN ISLAND, CQ

TINIAN INTL (TNI) (PGWT)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 1 27AUG09 (09239) (FAA)

TAKEOFF OBSTACLE NOTES:

- Rwy 8, trees beginning 694’ from DER, 507’ left of centerline, up to 100’ AGL/363’ MSL.
- Multiple trees beginning 569’ from DER, 471’ right of centerline, up to 100’ AGL/389’ MSL.
- Rwy 26, multiple trees beginning 743’ from DER, 508’ right of centerline, up to 100’ AGL/363’ MSL.

WENO ISLAND, FM

CHUUK INTL (TKK) (PTKK)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 2 11FEB10 (10042) (FAA)

DEPARTURE PROCEDURE:

- Rwy 4, climb heading 041° to 1100 before proceeding on course.
- Rwy 22, climb heading 221° to 1500 before proceeding on course.

TAKEOFF OBSTACLE NOTES:

- Rwy 4, bush 205’ from DER, 203’ right of centerline, 7’ AGL/17’ MSL.
- Rwy 22, bush 5’ from DER, 241’ right of centerline, 14’ AGL/24’ MSL.
- Bush 221’ from DER, 85’ right of centerline, 7’ AGL/17’ MSL. CAUTION: Ships with superstructure to 150’ traverse channels west of runway 4/22.

YAP ISLAND, FM

YAP INTL (T11) (PTYA)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 2 08DEC94 (94342) (FAA)

DEPARTURE PROCEDURE:

- Rwy 7, climbing right turn to 1500 via 090° bearing from YP NDB/DME, then climb on course.
- Rwy 25, climb to 500, then climb on course.
TERMINAL PROCEDURES

CONCLUDING REMARKS

Pilots must review the IFR Alternate Minimums Notes to determine alternate airport suitability. A designation on the approach chart means that pilots may not use that approach as an alternate due to unmonitored facility, absence of weather reporting service, or lack of adequate navigation coverage. Approaches with the A designation are not listed in this section. A designation on the approach chart indicates that the approach procedure has non-standard minimums (for aircraft other than helicopters) or restrictions (for all users) for its use as an alternate.

Alternate Minima (ref: 14 CFR 91.169)

<table>
<thead>
<tr>
<th>Helicopters</th>
<th>Precision Approach</th>
<th>Non-Precision Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Military (USA/USN/USAF)</td>
<td>For the selected approach: Ceiling: 200' above published ceiling Visibility: the greater of 1 SM visibility or the published visibility</td>
<td>See Service Regulations</td>
</tr>
</tbody>
</table>

Note: For alternate airport flight planning purposes, precision approach operations include: ILS, PAR, and GLS, and Non-Precision approach operations include: NDB, VOR, LOC, TACAN, LDA, SDF, ASR, RNAV (GPS) and RNAV (RNP).

NAME ALTERNATE MINIMUMS

BABELTHUAP ISLAND, PW
BABELTHUAP/ KOROR (ROR) (PTOR).……………NDB Rwy 9
 RNAV (GPS) Rwy 9
 RNAV (GPS) Rwy 27

NA except standard for operators with approved weather reporting service.

1Categories A, B, 900-2; Category C, 900-2½; Category D, 900-2½.

GUAM, GU
GUAM INTL (GUM) (PGUM).……………ILS or LOC Rwy 6L
 ILS or LOC Rwy 6R
 RNAV (GPS) Y Rwy 6L
 RNAV (GPS) Y Rwy 6R
 RNAV (GPS) Y Rwy 24L
 RNAV (GPS) Y Rwy 24R
 RNAV (RNP) Z Rwy 24L
 RNAV (RNP) Z Rwy 24R
 VOR or TACAN Rwy 24R

1LOC. Categories A, B, 1200-2; Categories C, D, 1200-3.
2Category D, 900-2½.
3Categories A, B, 900-2½; Category C, 900-2½; Category D, 900-3.
4Categories A, B, C, D, 900-3.
5Categories A, B, C, D, 800-2½.
6Categories A, B, 900-2; Category C, 900-2½; Category D, 900-2½.

HANA, HI
HANA (HNM) (PHHN).............RNAV (GPS) Rwy 26
 Category A, 900-2; Category B, 1100-2.

HILO, HI
HILO INTL (ITO) (PHTO).......ILS or LOC Rwy 26
 RNAV (GPS) Rwy 21
 RNAV (GPS) Rwy 26
 VOR-B
 VOR/DME or TACAN Rwy 26
 VOR/DME or TACAN-A

1NA when control tower closed.
2LOC. Category C, 900-2½; Category D, 1300-3.
3Category C, 900-2½; Category D, 1300-3.
<table>
<thead>
<tr>
<th>NAME</th>
<th>ALTERNATE MINIMUMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOLULU, HI</td>
<td>LOC Rwy 4R, LOC Rwy 8L, RNAV (GPS) Rwy 4L, RNAV (GPS) Rwy 8R, RNAV (GPS) Y Rwy 4R, RNAV (GPS) Y Rwy 8L, VOR or TACAN Rwy 4R, VOR or TACAN-A, VOR or TACAN-B</td>
</tr>
<tr>
<td>DANIEL K INOUYE INTL</td>
<td>1(^{st}), Category C, 800-2¼; Category D, 1400-3.</td>
</tr>
<tr>
<td>(HNL) (PHNL)</td>
<td>2(^{nd}), Category C, 900-2½; Category D, 1400-3.</td>
</tr>
<tr>
<td></td>
<td>3(^{rd}), Category E, 2000-3.</td>
</tr>
<tr>
<td></td>
<td>4(^{th}), Category C, 900-2¼; Category D, 1400-3;</td>
</tr>
<tr>
<td></td>
<td>Category E, 2100-3.</td>
</tr>
<tr>
<td></td>
<td>5(^{th}), Category D, 1300-3.</td>
</tr>
<tr>
<td></td>
<td>6(^{th}), Category C, 900-2¾; Category D, 1300-3.</td>
</tr>
<tr>
<td></td>
<td>7(^{th}), Category C, 900-2¼; Category D, 1400-3.</td>
</tr>
<tr>
<td>KAHULUI, HI</td>
<td>ILS Y or LOC Y Rwy 2, ILS Z or LOC Z Rwy 2, NDB Rwy 2, RNAV (GPS) Rwy 20, RNAV (GPS) Rwy 23, RNAV (GPS) Y Rwy 2, VOR Y Rwy 2, VOR Z or TACAN Rwy 2</td>
</tr>
<tr>
<td>KAHULUI (OGG) (PHOG)</td>
<td>1(^{st}), NA when control tower closed.</td>
</tr>
<tr>
<td></td>
<td>2(^{nd}), LOC, Category D, 1100-3; Category E, 1700-3.</td>
</tr>
<tr>
<td></td>
<td>3(^{rd}), Category C, 800-2½; Category D, 1200-3.</td>
</tr>
<tr>
<td></td>
<td>4(^{th}), Category D, 1100-3.</td>
</tr>
<tr>
<td></td>
<td>5(^{th}), Category D, 1200-3.</td>
</tr>
<tr>
<td></td>
<td>6(^{th}), NA when local weather not available.</td>
</tr>
<tr>
<td>KAILUA/KONA, HI</td>
<td>ILS or LOC Rwy 17, LOC BC Rwy 35, RNAV (GPS) Rwy 35, RNAV (GPS) Y Rwy 17, VOR or TACAN Rwy 17, VOR or TACAN Rwy 35</td>
</tr>
<tr>
<td>ELLISON ONIZUKA KONA INTL AT</td>
<td>1(^{st}), NA when control tower closed.</td>
</tr>
<tr>
<td>KEAHOLE (KOA) (PHKO)</td>
<td>2(^{nd}), LOC, Category D, 1100-3; Category E, 1700-3.</td>
</tr>
<tr>
<td></td>
<td>3(^{rd}), Category C, 800-2½; Category D, 1200-3.</td>
</tr>
<tr>
<td></td>
<td>4(^{th}}, Category C, 800-2¾; Category D, 1200-3.</td>
</tr>
<tr>
<td></td>
<td>5(^{th}}, Category D, 1100-3.</td>
</tr>
<tr>
<td></td>
<td>6(^{th}}, NA when local weather not available.</td>
</tr>
<tr>
<td>KAPOLEI, OAHU ISLAND, HI</td>
<td>ILS or LOC Rwy 5, RNAV (GPS) Rwy 5, RNAV (GPS) X Rwy 9, RNAV (RNP) Y Rwy 9</td>
</tr>
<tr>
<td>KALAELOA (JOHN RODGERS FLD) (JRF) (PHJR)</td>
<td>1(^{st}), NA when control tower closed.</td>
</tr>
<tr>
<td></td>
<td>2(^{nd}}, LOC, Category C, 800-2½; Category D, 900-2-¾.</td>
</tr>
<tr>
<td></td>
<td>3(^{rd}}, Category C, 800-2½; Category D, 900-2¾.</td>
</tr>
<tr>
<td></td>
<td>4(^{th}}, RNAV (GPS) X Rwy 9.</td>
</tr>
<tr>
<td>KAUNAKAKAI, HI</td>
<td>ILS or LOC Rwy 5, RNAV (GPS) Rwy 5, RNAV (GPS) X Rwy 9, VOR or TACAN-B</td>
</tr>
<tr>
<td>MOLOKAI (MKK) (PHMK)</td>
<td>1(^{st}), NA when control tower closed.</td>
</tr>
<tr>
<td></td>
<td>2(^{nd}}, LOC, Category C, 800-2½; Category D, 900-2-¾.</td>
</tr>
<tr>
<td></td>
<td>3(^{rd}}, Category C, 800-2½; Category D, 900-2¾.</td>
</tr>
<tr>
<td></td>
<td>4(^{th}}, RNAV (GPS) X Rwy 9.</td>
</tr>
<tr>
<td></td>
<td>5(^{th}}, Categories A, B, C, D, 1000-2.</td>
</tr>
<tr>
<td></td>
<td>6(^{th}}, Categories A, B, C, D, 1000-4.</td>
</tr>
</tbody>
</table>

PAC, 8 SEP 2022 to 3 NOV 2022
<table>
<thead>
<tr>
<th>NAME</th>
<th>ALTERNATE MINIMUMS</th>
<th>NAME</th>
<th>ALTERNATE MINIMUMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTA ISLAND, CQ</td>
<td>BENJAMIN TAISACAN MANGLONA INTL (GRO) (PGRO) Rwy 9 RNAV (GPS) Rwy 27 NDB Rwy 9 NDB Rwy 27</td>
<td>SAIPAN ISLAND, CQ</td>
<td>FRANCISCO C ADA/SAIPAN INTL (GSN) (PGSN) NDB Y Rwy 7</td>
</tr>
<tr>
<td></td>
<td>NA except standard for operators with approved weather reporting service. Categories A, B, 1200-2; Categories C, D, 1200-3.</td>
<td>TINIAN ISLAND, CQ</td>
<td>TINIAN INTL (TNI) (PGWT) RNAV (GPS) Rwy 8 RNAV (GPS) Rwy 26</td>
</tr>
<tr>
<td></td>
<td>NA when local weather not available. Category D, 800-2½.</td>
<td>WENO ISLAND, FM</td>
<td>CHUUK INTL (TKK) (PTKK) NDB Rwy 4 NDB Rwy 22 RNAV (GPS) Rwy 22 RNAV (GPS) Rwy 22</td>
</tr>
<tr>
<td></td>
<td>1NA except for operators with approved weather reporting service. Categories A, B, C, D, 800-2½.</td>
<td></td>
<td>2NA except for operators with approved weather reporting service. Categories A, B, C, D, 800-3.</td>
</tr>
<tr>
<td></td>
<td>2NA except standard for operators with approved weather reporting service. Categories C, D, 800-2½.</td>
<td></td>
<td>4Categories A, B, C, D, 800-3.</td>
</tr>
<tr>
<td></td>
<td>3Categories A, B, 1000-2; Categories C, D, 1000-3.</td>
<td></td>
<td>5Categories A, B, 900-2; Category C, 900-2½; Category D, 900-2½.</td>
</tr>
<tr>
<td></td>
<td>4Categories A, B, 1000-2; Categories C, D, 1000-3.</td>
<td></td>
<td>5Categories A, B, 900-2; Category C, 900-2½; Category D, 900-2½.</td>
</tr>
<tr>
<td>YAP ISLAND, FM</td>
<td>YAP INTL (T11) (PTYA) NDB Rwy 7 NDB Rwy 25 NDB/DME Rwy 25</td>
<td></td>
<td>1Category D, 800-2½;</td>
</tr>
<tr>
<td></td>
<td>1Category D, 800-2½;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2Categories A, B, 1000-2; Categories C, D, 1000-3.</td>
<td></td>
<td>2Categories A, B, 1000-2; Categories C, D, 1000-3.</td>
</tr>
</tbody>
</table>
THERE ARE NO RADAR PROCEDURES FOR PACIFIC
LAND AND HOLD-SHORT OPERATIONS (LAHSO)

LAHSO is an acronym for "Land and Hold-Short Operations." These operations include landing and holding short of an intersection runway, an intersecting taxiway, or other predetermined points on the runway other than a runway or taxiway. Measured distance represents the available landing distance on the landing runway, in feet.

Specific questions regarding these distances should be referred to the air traffic manager of the facility concerned. The Aeronautical Information Manual contains specific details on hold-short operations and markings.

<table>
<thead>
<tr>
<th>CITY/AIRPORT</th>
<th>LDG RWY</th>
<th>HOLD-SHORT POINT</th>
<th>AVBL LDG DIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOLULU, HI</td>
<td>04L</td>
<td>08L-26R</td>
<td>3,700 feet</td>
</tr>
<tr>
<td></td>
<td>04R</td>
<td>08L-26R</td>
<td>6,250 feet</td>
</tr>
<tr>
<td></td>
<td>08L</td>
<td>04L-22R</td>
<td>9,300 feet</td>
</tr>
</tbody>
</table>
An "airport surface hot spot" is a location on an aerodrome movement area with a history or potential risk of collision or runway incursion, and where heightened attention by pilots/drivers is necessary.

A "hot spot" is a runway safety related problem area on an airport that presents increased risk during surface operations. Typically it is a complex or confusing taxiway/taxiway or taxiway/runway intersection. The area of increased risk has either a history of or potential for runway incursions or surface incidents, due to a variety of causes, such as but not limited to: airport layout, traffic flow, airport marking, signage and lighting, situational awareness, and training. Hot spots are depicted on airport diagrams as open circles or polygons designated as "HS 1", "HS 2", etc. and tabulated in the list below with a brief description of each hot spot. Hot spots will remain charted on airport diagrams until such time the increased risk has been reduced or eliminated.

<table>
<thead>
<tr>
<th>CITY/AIRPORT</th>
<th>HOT SPOT</th>
<th>DESCRIPTION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOLULU, HI</td>
<td>HS 1</td>
<td>Rwy 04L and Rwy 04R.</td>
</tr>
<tr>
<td></td>
<td>HS 2</td>
<td>Aircraft Idg Rwy 04R and exiting left onto Twy K, sometimes fail to hold short of Rwy 04L-22R and Rwy 08L-26R.</td>
</tr>
<tr>
<td></td>
<td>HS 3</td>
<td>Aircraft proceeding north on Twy E and instructed to turn left onto Twy B, sometimes miss the turn onto Twy B, and proceed onto Rwy 08L-26R without clearance.</td>
</tr>
<tr>
<td></td>
<td>HS 4</td>
<td>Pilot confusion may be caused by the convergence of Twy A, Twy V, Twy T, Twy J, and Twy M, in close proximity to Rwy 08L.</td>
</tr>
<tr>
<td></td>
<td>HS 5</td>
<td>Tower Non-visibility area. Area not visible from the control tower due to trees.</td>
</tr>
<tr>
<td></td>
<td>HS 6</td>
<td>Minimal distance between rwy hold short lines between Rwy 04L-22R/Rwy 04R-22L.</td>
</tr>
<tr>
<td>KAHULUI, HI</td>
<td>HS 1</td>
<td>Rwy 05, Twy A, Twy F, and Twy G.</td>
</tr>
<tr>
<td></td>
<td>HS 2</td>
<td>Rwy 02-20, Twy E and the ramp.</td>
</tr>
<tr>
<td></td>
<td>HS 3</td>
<td>Twy A, Rwy 05-23</td>
</tr>
<tr>
<td>KAILUA/KONA, HI</td>
<td>HS 1</td>
<td>Extensive helicopter operations on Twy A abeam ramp K.</td>
</tr>
<tr>
<td>ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)</td>
<td>HS 2</td>
<td>Extensive helicopter operations on Twy A south of Twy C.</td>
</tr>
<tr>
<td>KAUNAKAKAI, HI</td>
<td>HS 1</td>
<td>Area not visible from control tower.</td>
</tr>
<tr>
<td>MOLOKAI (MKK)(PHMK)</td>
<td>HS 1</td>
<td>Area not visible from control tower.</td>
</tr>
</tbody>
</table>

*See appropriate Chart Supplement HOT SPOT table for additional information.
ARRIVAL ROUTE DESCRIPTION

CANON TRANSITION (CANON, BOOKE8): From over CANON INT via SOK R-277 to SOK VORTAC. Then via SOK R-102 to BOOKE DME. Thence . . .

DANNO TRANSITION (DANNO, BOOKE8): From over DANNO WP via RNAV 116° course to LIH VORTAC. Then via LIH R-110 to BOOKE DME. Thence . . .

SYVAD TRANSITION (SYVAD, BOOKE8): From over SYVAD INT via SOK R-260 to SOK VORTAC. Then via SOK R-102 to BOOKE DME. Thence . . .

THOMA TRANSITION (THOMA, BOOKE8): From over THOMA WP via RNAV 135° course to LIH 123 DME, then LIH R-315 to LIH VORTAC. Then via LIH R-110 to BOOKE DME. Thence . . .

. . . From over BOOKE DME via LIH R-110 and HNL R-258 to HNL VORTAC. Expect RADAR vectors.

BOOKE EIGHT ARRIVAL (BOOKE, BOOKE8) 27MAY93
NOTE: RADAR required to HARPO INT.

NOTE: Chart not to scale.

ARRIVAL ROUTE DESCRIPTION

HARPO TRANSITION (HARPO,CAMPS3): From over HARPO INT via LNY R-095 to CAMPS INT. Thence . . .

LANAI TRANSITION (LNY,CAMPS3): From over LNY VORTAC via KEIKI INT and LNY R-095 to CAMPS INT. Thence . . .

. . . . From over CAMPS INT on I-OGG localizer course to Kahului Airport.

LOST COMMUNICATIONS:
At CAMPS INT, proceed with the ILS RWY 2 approach.
TERMINAL PROCEDURES

INOYI ONE ARRIVAL (RNAV) Transition Routes

HCF CENTER
127.6 291.6 (APACK, ZIGIE)
126.6 284.6 (BITTA, DENNS)
HONOLULU TOWER
118.1 257.8
123.9 273.575 (Rwy 8R/26L)
D-A115
127.9 251.15

NOTE: RADAR required.
NOTE: RNAV 1.
NOTE: GPS required.
NOTE: Turbojet and turboprop aircraft only.
NOTE: Turbojet aircraft descend via mach number until transition to 280K. Maintain 280K until slowed by the STAR.

BAMBO 15000 250K
See following page for Arrival Routes.

APACK TRANSITION (APACK, INOYI11)
BITTA TRANSITION (BITTA, INOYI11)
DENNIS TRANSITION (DENNIS, INOYI11)
JOELE TRANSITION (JOELE, INOYI11)
ZIGIE TRANSITION (ZIGIE, INOYI11)

INOYI ONE ARRIVAL (RNAV) Transition Routes

(Continued on following page)

HONOLULU, HAWAII

PAC, 8 SEP 2022 to 3 NOV 2022

(DANIEL K INOUYE INTL (HNL) (PHNL)
TERMINAL PROCEDURES

INLOY ONE ARRIVAL (RNAV) Arrival Routes

<table>
<thead>
<tr>
<th>HCF CENTER</th>
<th>127.6 291.6 (APACK, ZIGIE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>126.6 284.6 (BITTA, DENNS)</td>
</tr>
<tr>
<td>HONOLULU TOWER</td>
<td>118.1 257.8</td>
</tr>
<tr>
<td></td>
<td>123.9 273.575 (Rwy 8R/26L)</td>
</tr>
<tr>
<td>D-AISIS</td>
<td>127.9 251.15</td>
</tr>
</tbody>
</table>

Arrival Route Description

From BAMBO on track 237° to cross IHNET at or above 8000, then on track 237° to cross INOYI at or above 8000 and at 230K.

LANDING RUNWAY 4L: From INOYI on track 216° to cross HUBAP at 7000 and at 220K, then on track 216°. Expect RADAR vectors to final approach course or visual approach.

LANDING RUNWAY 4R: From INOYI on track 216° to cross HUBAP at 7000 and at 220K, then on track 216°. Expect RNAV RNP/ILS/GPS approach or RADAR vectors to final approach course.

LANDING RUNWAY 8L: From INOYI on track 233° to DZURA, then on track 259° to cross OOKAH at 6000 and at 210K, then on heading 259°. Expect RNAV RNP/ILS/GPS approach or RADAR vectors to final approach course.

LANDING RUNWAY 8R: From INOYI on track 233° to DZURA, then on track 259° to cross OOKAH at 6000 and at 210K, then on heading 259°. Expect RADAR vectors to final approach course or visual approach.

NOTE: Chart not to scale.

NOTE: RADAR required.

NOTE: RNAV 1.

NOTE: GPS required.

NOTE: Turbojet and turboprop aircraft only.

NOTE: Turbojet aircraft descend via mach number until transition to 280K. Maintain 280K until slowed by the STAR.
TERMINAL PROCEDURES

JULLE FIVE ARRIVAL

AL-754 (FAA)

HONOLULU, HAWAII

PAC, 8 SEP 2022 to 3 NOV 2022

(Note: Chart not to scale)

NOTE: DME required for CHAIN transition.
NOTE: RADAR required.

ARRIVAL ROUTE DESCRIPTION

CHAIN TRANSITION (CHAIN JULLE5): From over CHAIN INT on LNY 13 DME CCW arc to SOBOW then via LNY R-278 to JULLE INT. Thence.

DOVRR TRANSITION (DOVRR JULLE5): From over DOVRR INT via MKK R-180 to JORDA INT then via HNL R-125 to JULLE INT. Thence.

HOKLA TRANSITION (HOKLA JULLE5): From over HOKLA INT via HNL R-125 and KOA R-294 on HNL R-125 to JULLE INT. Thence.

LANAI TRANSITION (LNY JULLE5): From over LNY VORTAC via LNY R-278 to JULLE INT. Thence.

. . . . From over JULLE INT on LNY R-278 to ALANA INT. Expect vectors to final approach course.

LOST COMMUNICATIONS: At ALANA INT proceed with the VOR or TACAN RWY 4R approach.

JULLE FIVE ARRIVAL
(JULLE JULLE5) 25AUG11
TERMINAL PROCEDURES

KAENA TWO ARRIVAL (RNAV)

ARRIVAL ROUTE DESCRIPTION

APACK TRANSITION (APACK, KAENA2)
BITTA TRANSITION (BITTA, KAENA2)
CLUTS TRANSITION (CLUTS, KAENA2)
DENNS TRANSITION (DENNS, KAENA2)
ZIGIE TRANSITION (ZIGIE, KAENA2)

From KAENA as depicted to MAKOAA. Cross RABBS at/above 4000, cross MAKOAA at/below 3700 and at/above 3400 and at/below 210K.
Expect PHNL ILS RWY 8L approach.

LOST COMMUNICATIONS: Descend via the KAENA ARRIVAL. At MAKOAA, cleared PHNL ILS RWY 8L approach.

NOTE: Chart not to scale.
ARRIVAL ROUTE DESCRIPTION

FIRES TRANSITION (FIRES.KAYAK6): From over FIRES on MUE R-274 to TAMMI, then on KOA R-351 to KAYAK. Thence. . . .

LANAI TRANSITION (LNY.KAYAK6): From over LNY VORTAC on LNY R-116 to TAMMI, then on KOA R-351 to KAYAK. Thence. . . .

MAUI TRANSITION (OGG.KAYAK6): From over OGG VORTAC on OGG R-188 to ZILNA, then on LNY R-116 to TAMMI, then on KOA R-351 to KAYAK. Thence. . . .

MOLOKAI TRANSITION (MKK.KAYAK6): From over MKK VORTAC on MKK R-107 and KOA R-351 to TAMMI, then on KOA R-351 to KAYAK. Thence. . . .

OKALA TRANSITION (OKALA.KAYAK6): From over OKALA on MUE VOR/DME R-075 to MUE VOR/DME, then on MUE R-245 to KAYAK. Thence. . . .

ONOHI TRANSITION (ONOHI,KAYAK6): From over ONOHI on KOA R-351 to KAYAK. Thence. . . .

UPOLU POINT TRANSITION (UPP.KAYAK6): From over UPP VORTAC on UPP R-202 to KAYAK. Thence. . . .

. . . . From over KAYAK on KOA R-351 to KOA VORTAC. Expect RADAR vectors.

LOST COMMUNICATIONS: At KAYAK proceed on VOR/DME or TACAN RWY 17 approach.
TERMINAL PROCEDURES

KLANI THREE ARRIVAL (RNAV) Arrival Routes

From KLANI on track 111° to cross BAIFRE at 8000, then on track 111° to SHILLS.

LANDING RUNWAYS 31/31°. From SHILLS on track 122° to cross HAURY at 4000 and at 210K, expect RNAV RNP/ILS/GPS or RADAR vectors to final approach course.

LANDING RUNWAYS 26/26°. From SHILLS on track 110° to cross SELIC at 5000 and at 210K. Expect RNAV RNP/ILS/GPS or RADAR vectors to final approach course.

LANDING RUNWAYS 26/27°. From SHILLS on track 088° to CENAS, then on track 098° to POHAI at 5000 and 230K, then on track 140° to NBODY at 6000 and 210K, then on track 140° to cross RNAV RNP/ILS/GPS or RADAR vectors to final approach course.

WTC CENTER 118°, 275°, 251°, 15, 12°. HONOLULU TOWER 275°, 251°, 15, 12°. HONOLULU 275°, 251°, 15, 12°.

NOTE: Radar required.

NOTE: RNAV 1 required.

NOTE: GPS required.

NOTE: Turbojet and turboprop aircraft only.

NOTE: Turbojet aircraft descend via mach number until transition to 280K.

NOTE: Maintain 280K until 10,000 MSL.
NOTE: RADAR required.
NOTE: RNAV 1.
NOTE: GPS required.
NOTE: Turboprop and turboprop aircraft only
NOTE: For non-RNP AR aircraft, expect RADAR vectors to final approach course or visual approach.

ARRIVAL ROUTE DESCRIPTION

APACK TRANSITION (APACK.LNDHY1)
BITTA TRANSITION (BITTA.LNDHY1)
DENNS TRANSITION (DENNS.LNDHY1)
FITES TRANSITION (FITES.LNDHY1)
ZIGIE TRANSITION (ZIGIE.LNDHY1)

From LNDHY on track 205° to cross MUNJU at or above 7000 and at 220K, then on track 204° to cross HOMAI at 5000 and at 210K, then on track 204°. Expect RNAV (RNP)/ILS/Visual Approach Landing Rwy 2, as assigned by ATC.
NOTE: RNAV 1.
NOTE: GPS required.
NOTE: Turbojet and turboprop aircraft only.
NOTE: If requesting the ILS RWY 26 approach, advise ATC prior to LYCHI.
NOTE: Chart not to scale.

ARRIVAL ROUTE DESCRIPTION

BARBY TRANSITION [BARBY.LYCHI1]
CHINE TRANSITION [CHINE.LYCHI1]
NOMEA TRANSITION [NOMEA.LYCHI1]
POHOU TRANSITION [POHOU.LYCHI1]

From PARIS on track 123° to cross LYCHI at or above 6000.

LANDING RUNWAY 21: From LYCHI on track 123° to cross KENNZ at or above 4000. Expect RNAV (GPS) RWY 21 or visual approach.

LANDING RUNWAY 26: From LYCHI on track 123° to cross KENNZ at or above 4000. Expect ILS or RNAV (GPS) RWY 26 approach.
ARRIVAL ROUTE DESCRIPTION

APACK TRANSITION [APACK.MAGGI3]: From over APACK DME via MKK R-004 to MAGGI INT. Thence . . .

BITTA TRANSITION [BITTA.MAGGI3]: From over BITTA DME via MKK R-022 to intercept CKH R-039 to MAGGI INT. Thence . . .

CLUTS TRANSITION [CLUTS.MAGGI3]: From over CLUTS DME via heading 240° to intercept CKH R-039 to MAGGI INT. Thence . . .

DENNS TRANSITION [DENNS.MAGGI3]: From over DENNS INT via heading 260° to intercept CKH R-039 to MAGGI INT. Thence . . .

ZIGIE TRANSITION [ZIGIE.MAGGI3]: From over ZIGIE DME via heading 156° to intercept MKK R-004 to MAGGI INT. Thence . . .

. . . From over MAGGI INT via CKH R-039 to CKH VORTAC then RADAR vectors for approach to airport.
MAKAH ONE ARRIVAL (RNAV)

NOTE: Radar required.

NOTE: GPS required.

NOTE: Turboprop aircraft only.

NOTE: For non-RNAV aircraft, expect ILS/GPS, or RADAR vectors to final approach course prior to ALANA.

From MAKAH on track 278° to cross ALANA at 6000 and at 210°, then on heading 278° or as assigned by AIC. Expect assigned instrument approach prior to ALANA.

MAKAH ONE ARRIVAL (RNAV)

MAKAH1

TERMINAL PROCEDURES

Z15
ARRIVAL ROUTE DESCRIPTION

CARRP TRANSITION (CARRP.OPACA4): From over CARRP WP, RNAV direct to OPACA DME. Thence. . .

CHOKO TRANSITION (CHOKO.OPACA4): From over CHOKO WP, RNAV direct to BINJO DME, then direct to OPACA DME. Thence. . .

KATHS TRANSITION (KATHS.OPACA4): From over KATHS WP, RNAV direct to OPACA DME. Thence. . .

. . . From over OPACA DME via HNL R-207 to HNL VORTAC, expect RADAR vectors to final approach course.
NOTE: DME or RADAR required.

NOTE: Chart not to scale.
ARIVAL ROUTE DESCRIPTION

CHAIN TRANSITION [CHAIN.SAKKI]: From over CHAIN INT on LNY 13 DME CCW arc to SOBOW and LNY R-278 to SAKKI INT. Thence . . .

DOVRR TRANSITION [DOVRR.SAKKI]: From over DOVRR on MKK R-180 to JORDA, turn left heading 315° to join I-EPC LDA course at SUCTU 40 DME then to SAKKI INT. Thence. . . .

HOKLA TRANSITION [HOKLA.SAKKI]: From over HOKLA on HNL R-125 to JORDA, turn right heading 315° to join I-EPC LDA course at SUCTU 40 DME then to SAKKI INT. Thence. . . .

LANAI TRANSITION [LNY.SAKKI]: From over LNY VORTAC on LNY R-278 to SAKKI INT. Thence. . . .

. . . For runways 22, 26 only: From over SAKKI INT on the LDA/DME RWY 26L course to SECIL 11 DME.

LOST COMMUNICATIONS: At SECIL INT/WP proceed with the LDA/DME RWY 26L approach.
ARRIVAL ROUTE DESCRIPTION

BEACH TRANSITION (BEACH.SHLAE1)
CHAIN TRANSITION (CHAIN.SHLAE1)
CRISI TRANSITION (CRISI.SHLAE1)
LAVAS TRANSITION (LAVAS.SHLAE1)
LANAI CITY TRANSITION (LNY.SHLAE1)

From DYLLI on track 304° to cross SHLAE at 4000 and at 210K, then on heading 304° or as assigned by ATC. Expect RADAR vectors to final approach course.
NOTE: RADAR required.
NOTE: RNAV 1.
NOTE: GPS required.
NOTE: Turbojet and turboprop aircraft only.
NOTE: For non-RNP AR aircraft landing Rwys 26L/R, expect LDA or RADAR vectors to final approach course prior to CUDEK.
NOTE: Turbojet aircraft descend via mach number until transition to 280K. Maintain 280K until 10000 MSL.

ARRIVAL ROUTE DESCRIPTION

APACK TRANSITION (APACK.SYMIN1)
BITTA TRANSITION (BITTA.SYMIN1)
DENNS TRANSITION (DENNS.SYMIN1)
ZIGIE TRANSITION (ZIGIE.SYMIN1)

LANDING PHNL: From SYMIN on track 210° to cross CUDEK at 6000 and at 210K, then on heading 210° or as assigned by ATC. Expect assigned instrument approach procedure.
NOTE: RADAR or DME required.

NOTE: Chart not to scale.

(NARRATIVE ON FOLLOWING PAGE)
ARRIVAL ROUTE DESCRIPTION

LANAI TRANSITION [LNY.VECKI9]: From over LNY VORTAC on LNY R-116 to TAMMI, then on heading 167° to VECKI. Thence . . .

MAUI TRANSITION [OGG.VECKI9]: From over OGG VORTAC on OGG R-188 to ZIIINA, then on LNY R-116 to TAMMI, then on heading 167° to VECKI. Thence . . .

MOLOKAI TRANSITION [MKK.VECKI9]: From over MKK VORTAC on MKK R-107 to WANSI, then on KOA R-351 to TAMMI, then on heading 167° to VECKI. Thence . . .

OKALA TRANSITION [OKALA.VECKI9]: From over OKALA on MUE VOR/DME R-075 to MUE VOR/DME, then on MUE R-247 to VECKI. Thence . . .

ONOHI TRANSITION [ONOHI.VECKI9]: From over ONOHI on KOA R-351 to TAMMI, then on heading 167° to VECKI. Thence . . .

UPOLU POINT TRANSITION [UPP.VECKI9]: From over UPP VORTAC on UPP R-210 to BAYCA, then on I-KOA 174° course to VECKI. Thence . . .

. . . from over VECKI INT on I-KOA localizer course to Ellison Onizuka Kona Intl at Keahole.

LOST COMMUNICATIONS: At VECKI INT proceed with ILS or LOC/DME RWY 17 approach.
TERMINAL PROCEDURES

RNP APCH-GPS:

- Griding NA north of Rwy 9-27.
- Rwy 27 helicopter visibility reduction below ½ SM NA.
- Obtain local alimeter setting on CTAF; when not received, procedure NA. No controlled airspace below 5500.

MISSING APPROACH: Climb to 1900 direct JAKEF and hold.

KOROR RADIO

123.6 (CTAF)

RNAV (GPS) RWY 27

BABELTHUAP/KOROR (ROR)(PTRO)

APP CRS

- Rwy Idg: 7200
- TDZE: 176
- Apt Elev: 177

1900

JAKEF

OHUDA

ITAZU

4 NM Holding Pattern

3.00° TCH 49

270°

14000 1900

5 NM

6 NM

CATEGORY

- A
- B
- C
- D

LNAV MDA

- 680-1 504 (600-1)
- 680-1½ 504 (600-1½)

CIRCLING

- 700-1 523 (600-1)
- 760-1 583 (600-1)
- 780-1½ 603 (700-1½)
- 780-2 603 (700-2)

MIRL Rwy 9-27

REIL Rwy 9 and 27

BABELTHUAP ISLAND, PW

Orig-C 08SEP22

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

NDB RWY 9

KOROR RADIO
123.6 (CTAF)

Remain within 10 NM

CATEGORY A B C D
S-9 1000-1 1000-1¼ 1000-2½ 823 (900-2½)

MIRL Rwy 9-27
REIL Rwy 9 and 27

BABELTHUAP ISLAND, PW
Orig-C 08SEP22

07°22'N-134°33'E

PAC, 8 SEP 2022 to 3 NOV 2022
For uncompensated Baro-VNAV systems, procedure NA below 19°C (66°F) or above 48°C (119°F). GPS required. For inoperative MALSR, increase RNP 0.30 visibility to 1 mile and RNP 0.30 visibility to ½ mile.

*Missed approach requires a minimum climb of 276 feet per NM to 1400.

Note:
- CIR: 119°
- TDZE: 256
- WUBEN: T3900
- OWKEN: T3300
- ADEDE: 8T00
- ASADE: 5T00
- 2800
- 063°
- 270°
- 341°
- HIRL:

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNP 0.30 DA</td>
<td>511-½</td>
<td>255 (300-½)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNP 0.30 DA</td>
<td>656-1</td>
<td>400 (400-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RNAV (RNP) Z RWY 6L

GUAM INTL (GUM)(PGUM)

PAC, 8 SEP 2022 to 3 NOV 2022
For uncompensated Baro-VNAV systems, procedure NA below 19°C (66°F) or above 48°C (118°F). GPS required.

*Missed approach requires a minimum climb of 285 feet per NM to 1,400.

ATIS
GUAM CERAP
AGANA TOWER
GND CON
CLNC DEL
119.0
119.8 269.0
118.1 340.2
121.9 336.4
121.9

Procedure NA for arrivals at WUVEN via A597 northwest bound.

Procedure NA for arrivals at PULUEE via G467 R596 westbound.

Procedure NA for arrivals at ASADE via 8586 southeast bound.

TERMINAL PROCEDURES

RNAV (RNP) Z RWY 6R

GUAM INTL (GUM)(PGUM)

APP CRS
Rwy Idg 10014
TDZE 258
Apt Elev 298

MALSR
MISSED APCH FIX

MISSING APPROACH:
Climb to 3000 via track
063° to CIBOL and hold.

CATEGORY
A
B
C
D

RNP 0.30° DA
508 ½ 250 (300-½)

RNP 0.30° DA
656-1 398 (400-1)

AUTHORIZATION REQUIRED

GUAM, GU
Orig-C 15DEC11

13°29' N-144°48'E

PAC, 8 SEP 2022 to 3 NOV 2022
For uncompensated Baro-VNAV systems, procedure NA below 19°C (66°F) or above 48°C (118°F). GPS required. Procedure NA at night.

TERMINAL PROCEDURES

RNAV (RNP) Z RWY 24L

GUAM INTL (GUM)(PGUM)

MISSING APPROACH: Climb to 3000 via track 243° to DALPE and hold.

ATIS
- Guam Cerap: 119.0
- Agana Tower: 118.1 340.2
- GND Con: 121.9 336.4
- CLNC Del: 121.9

PROCEDURE NA

- Procedure NA for arrivals at CULPS via A221 northeast bound.
- Procedure NA for arrivals at BAGBE via A450 northeast bound.
- Procedure NA for arrivals at GUMGE via A597 R584 southeast bound.

AUTHORIZATION REQUIRED

RNAV (RNP) Z RWY 24L

GUAM INTL (GUM)(PGUM)

PAC, 8 SEP 2022 to 3 NOV 2022

TERMINAL PROCEDURES

RNAV (RNP) Z RWY 24L

GUAM INTL (GUM)(PGUM)

PAC, 8 SEP 2022 to 3 NOV 2022
RNAV (GPS) Y RWY 6R

TERMINAL PROCEDURES

APP CRS
- **Rwy 1dg**: 10014
- **TDZE**: 258
- **Apt Elev**: 305

ATS
- GUAM CERAP: 119.8
- AGANA TOWER: 118.1
- GND CON: 121.9
- CLNC DEL: 121.9

Procedure NA for arrivals at WUVEN on A597 northwest bound.

Procedure NA for arrivals at PULEE on G467-R596 west bound.

Procedure NA for arrivals at ASADE on B586 southeast bound.

category
- **A**
 - LNAV MDA: 980-3/4, 722 (700-3/4)
 - CIRCLING: 980-1, 675 (700-1)
- **B**
 - LNAV MDA: 980-12/3, 722 (700-12/3)
 - CIRCLING: 980-2, 675 (700-2)
- **C**
 - LNAV MDA: 980-12/3, 722 (700-12/3)
 - CIRCLING: 980-2, 675 (700-2)
 - HIRL all Rwy
- **D**
 - LNAV MDA: 980-12/3, 722 (700-12/3)
 - CIRCLING: 980-2, 675 (700-2)

Guam, GU

Amdt 1C 26MAR20

13°29'N-144°48'E

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

<table>
<thead>
<tr>
<th>VORAC UNZ</th>
<th>APP CRS</th>
<th>Rwy Idg</th>
<th>TDZE</th>
<th>Apr Elev</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>115.8</td>
<td>062°</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATIS

- **GUAM CERAP**: 119.8 269.0
- **AGANA TOWER**: 118.1 340.2
- **GND CON**: 121.9 336.4
- **CLNC DEL**: 121.9

Circling NA southeast of Rwy 6R-24L

MISSED APPROACH: Climb to 2600 then right turn direct UNZ VORTAC.

MAP

- **IAP**
 - **NIMITZ**: 115.8 UNZ
 - Chan 105
- **Rwy 24L**: 062°
- **Rwy 15R**: 062°
- **Rwy 09R**: 090°
- **Rwy 270°**: 270°
- **ELEV 305**

CIRCLING

- **2600**
- **2100**
- **242°**

CATEGORY

- **A**: 880-1
- **B**: 575 (600-1)
- **C**: 940-1\(\frac{3}{4}\)
- **D**: 635 (700-1\(\frac{3}{4}\))
- **ELEV 305**
- **HRL all Rwy**

GUAM, GU

Orig-F: 24MAY18

13°29'N-144°48'E
Circling NA southeast of Rwy 6R-24L.
DME required.
For inop ALS, increase Cat C visibility to 1½ SM.

VOR or TACAN RWY 6L
GUAM INTL (GUM) (PGUM)

<table>
<thead>
<tr>
<th>ATIS</th>
<th>GUAM CERAP</th>
<th>AGANA TOWER</th>
<th>GND CON</th>
<th>CINC DEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>119.0</td>
<td>119.8</td>
<td>118.1</td>
<td>121.9</td>
<td>121.9</td>
</tr>
<tr>
<td></td>
<td>269.0</td>
<td>340.2</td>
<td>336.4</td>
<td></td>
</tr>
</tbody>
</table>

MALSR

MISSED APPROACH: Climb to 2600 then right turn on UNZ VORTAC R-242 to FLAKE/7 DME and hold.
TERMINAL PROCEDURES

VOR or TACAN RWY 24R
GUAM INTL (GUM)(PGUM)

PAC, 8 SEP 2022 to 3 NOV 2022

ATIS 119.0
GUAM CERAP 119.8 269.0
AGANA TOWER 118.1 340.2
GND CON 121.9 336.4
CLNC DEL 121.9

DME REQUIRED

240° R-062
UNZ (13.6)

FIBEE
UNZ (15.6)

JUVNI UNZ (9.6)

2300 to FIBEE
062° (15.6)

242° 4.5 NM
from RAF

1190

270°

412

341°

554

TWR 352

305

TERMINAL PROCEDURES

Circling NAM southeast of Rwy 6R-24L.
Rwy 24R helicopter visibility reduction below ½ SM NA.

MISSED APPROACH: Climb to 2300 then left turn on
UNZ VOR TAC R-062 to FIBEE/UNZ R-15.6 DME and hold.

NIMITZ
115.8 UNZ
Chan 105

TERMINAL PROCEDURES

Categories

CATEGORY
S-24R
CIRCLING

A 1180-1 1180-1 3/4 1180-2 1/2 875 (900-1/4)
B 1180-1 3/4 1180-2 1/2 875 (900-1/4)
C 1180-2 1/2 875 (900-2/3)
D 1180-2 3/4 875 (900-2/3)

30°

2 NM

6 NM

One Minute Holding Pattern

HIWL all Rws
TERMINAL PROCEDURES

NDB RWY 24R
GUAM INTL (GUM)(PGUM)

ATIS 119.0
GUAM CERAP 119.8 269.0
AGANA TOWER 118.1 340.2
GND CON 121.9 336.4
CLNC DEL 121.9

DME REQUIRED

NIMITZ 115.8 UNZ 269.0 Chan 105

NOVKE UNZ 5.1

MT MACAJNA 385 AJA

2300 from UNZ VORTAC to ADAYI 061° (15.6)

1332

ELEV 305 TDZE 305

241° 4.5 NM from FAF

341°

UNZ VORTAC

AJA 061° ADAYI UNZ 15.6

NOVKE UNZ 5.1

MOGOE UNZ 9.6

MOGOE

1800

241°

ADAYI UNZ 15.6

One Minute Holding Pattern

CATEGORY
S-24R 1220-1 915 (1000-1)
C IRCLING 1220-1 915 (1000-1)

GUAM, GU

Amdt 1A 24MAY18

13°29’N-144°45’E

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

RNAV (GPS) RWY 8
HANA (HNM)(PHHN)

Circling NA south of RWY 8-26. Procedure NA at night.
RNAV 8 helicopter visibility reduction below 1 SM NA.
When local altimeter setting not received, procedure NA.

AWOS-3PT
118.325

HCF CENTER
118.45 278.3

CLNC DEL
122.3

CTAF
122.9

Final approach course offset 29.86°

7.4 NM
5.5 NM
0.7

CATEGORY
A
B
C
D
LNAV MDA
1500-1 1/4
1422 (1500-1)1/4
1422 (1500-1)1/4
NA

CIRCLING
1500-1 1/4
1422 (1500-1)1/4
1422 (1500-1)1/4
NA
TERMINAL PROCEDURES

RNAV (GPS) RWY 26
HANA (HNM)(PHHN)

PAC, 8 SEP 2022 to 3 NOV 2022

AWOS-3PT
118.325

HCF CENTER
118.45 278.3

CLNC DEL
122.3

CTAF
122.9

OPANA
3800
081°
(10.2)

GOYEY
3000
081°
(10.2)

MAP
IHEPA

(FAF)
IHEPA

(IAF)
INUCU

(IAF)
IHEPA

(IAF)
HALEU

PULPS

GYPLE

HOLD
5500
2500

508

3201

8907

4577

880

3000
081°
(1.2)

3000
1700

259°
(5.1)

229°
259°

079°
4 NM

2500

0.7% UP

3606 X 100

111°

122°

3.04°

TCH 40

2.1 NM

2.1 NM to
IHEPA

IHEPA

1700

259°

2500

079°

5500

2500

0.5

2.1 NM

2.4 NM

5.1 NM

CATEGORY

LNAV MDA

A

940-1
870 (900-1)

940-1¼
870 (900-1¼)

NA

B

C

D

NA

CIRCLING

940-1¼
862 (900-1¼)

1100-1½
1022 (1100-1½)

NA

HANA, HAWAII

Amdt 1A 08SEP22

20°48'N-156°01'W

HANA (HNM)(PHHN)

RNAV (GPS) RWY 26
NOTE: GPS required.
NOTE: RNAV 1.
NOTE: Do not exceed 200K until LNB RG.

TAKEOFF MINIMUMS
Rwy 26: NA - Obstacles.
Rwy 8: Standard with a minimum climb of 270' per NM to 3400.

TAKEOFF OBSTACLE NOTES
Rwy 8: Multiple trees and bushes beginning 122' from DER,
74' right of centerline, up to 50' AGL/139' MSL.

NOTE: Chart not to scale

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 8: Climb heading 079° to 578 then direct SIPAE, then on track
161° to LNB RG, thence . . .

.climb in holding (if required) to cross LNB RG at or above 5400 before proceeding
on assigned route.
TERMINAL PROCEDURES

HILO, HAWAII

AL-756 (FAA)

LOC/DME I-ITO

110.7

Chan 44

APP CRS

259°

Rwy Idg

TDZE

38

Apt Elev

38

DME required. From KENNZ: RNAV 1-GPS required.

Circling NA south of Rwy 8-26. Rwy 26 helicopter visibility reduction below 3/4 SM NA. Inop table does not apply to S-ILS 26 all Cats. For inop ALS, increase S-LOC 26 Cat A/B visibility to 1 SM, and Cat C/D to 1/2 SM.

ATAL

126.4

HILO APP CON

119.7 269.2

HILO TOWER

118.1 (CTAF) 263.1

GND CON

121.9

MISSED APPROACH: Climb to 500 then climbing right turn to 3300 on heading 100° and on ITO VORTAC R-079 to CEKOBI/ITO VORTAC 10 DME and hold, continue climb-in-hold to 3300.

ATIS

111.7

TDZE 38

CEKOBI I-ITO 10

Chan 44

HOLD 4500 2700

VGS and ILS glidepath not coincident (VGS Angle 2.6°/TCH 70).

Use I-ITO DME when on the localizer course.

One Minute Holding Pattern

GS 2.60°

TCH 55

CATEGORY

A

B

C

D

S-ILS 26

288-3/4 250 (300- 3/4)

S-LOC 26

420-3/4 382 (400- 3/4)

CIRCLING

500-1 462 (500-1)

540-1 502 (600-1)

840-2/4 802 (900-2/4)

1320-3 1282 (1300-3)

HILO, HAWAII

Amnt 14A 17JUN21

19°43’N-155°03’W

PAC, 8 SEP 2022 to 3 NOV 2022
24

TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

RNAV (GPS) RWY 21
HILO INTL (ITO) (PHTO)

ATIS
126.4

HILO APP CON
119.7 269.2

HILO TOWER
118.1 (CTAF) 263.1

GND CON
121.9

Circling NA south of RWy 8-26. RWy 21 helicopter visibility reduction below ¾ SM NA.

Procedure NA for arrivals at ARBOR on V15-V2-V16 northwest bound.

Procedure NA for arrivals at HAKRI on V22 northeast bound.
Circling NA south of Rwy 8-26. Rwy 26 helicopter visibility reduction below ½ SM NA. WAAS VNAV NA. For uncompensated Baro-VNAV systems, LNAV/VNAV NA below 15° or above 54°. For inop AIS, increase LNAV/VNAV all Cats visibility to ½ SM and increase LNAV Cat A/B visibility to 1 SM.

Procedure NA for arrivals at ARBOR on V13-V2-V16 northwest bound.

Procedure NA for arrivals at HAKRI on V22 northeast bound.

Procedure NA for arrivals at GEBNE on V15 eastbound.

RNAV (GPS) RWY 26

HILO INTL (ITO) (PHTO)
For inop ALS, increase S-26 Cat A/B visibility to 1 SM and Cat D to 1½ SM. Circling NA south of Rwy 8-26. Helicopter visibility reduction below ¾ SM NA.
Circling NA south of Rwy 8-26.

MISSED APPROACH: Climbing right turn to 3000 on ITO VORTAC R-002 then direct ITO VORTAC and hold.
TERMINAL PROCEDURES

PARIS FOUR DEPARTURE (OBSTACLE)

PARIS
N20°10'12" W155°13'32"
P-2

SAPDE
N20°09'39"
W154°57'76"

UPOLU POINT
112.3 UPP
Chan 70

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 3: Climb heading 030° and ITO R-355 to SAPDE INT, thence . . .
TAKEOFF RUNWAY 8: Climb heading 079° to ITO VORTAC and ITO R-355 to SAPDE INT, thence . . .
TAKEOFF RUNWAY 21: Climbing left turn direct ITO VORTAC and ITO R-355 to SAPDE INT, or climb in visual conditions to cross ITO VORTAC northbound at or above 1200 MSL, then via R-355 to SAPDE INT, thence . . .
TAKEOFF RUNWAY 26: Climbing right turn via heading 045° and ITO R-355 to SAPDE INT, or climb in visual conditions to cross ITO VORTAC northbound at or above 1200 MSL, then via R-355 to SAPDE INT, thence . . .

. . . . proceed via UPP R-082 to PARIS INT.
TAKEOFF OBSTACLE NOTES

Rwy 3: Numerous trees and WSK beginning 395’ from DER, 68’ left of centerline, up to 86’ AGL/115’ MSL.
 Numerous trees beginning 325’ from DER, 137’ right of centerline, up to 66’ AGL/95’ MSL.

Rwy 8: Tree 1198’ from DER, 480’ left of centerline, 37’ AGL/70’ MSL.
 Numerous trees beginning 414’ from DER, 328’ right of centerline, up to 46’ AGL/79’ MSL.

Rwy 21: Numerous trees and poles beginning 1077’ from DER, 272’ left of centerline, up to 70’ AGL/490’ MSL.
 Numerous trees and poles beginning 236’ from DER, 43’ right of centerline, up to 83’ AGL/362’ MSL.
 Vehicles on road beginning 234’ from DER, 260’ left of centerline, 15’ AGL/58’ MSL.

Rwy 26: Numerous vehicles beginning 6’ from DER, 452’ right of centerline, up to 15’ AGL/39’ MSL.
 Numerous trees and light poles beginning 542’ from DER, 471’ left of centerline, up to 86’ AGL/92’ MSL.
 Numerous trees beginning 1645’ from DER, 266’ right of centerline, up to 93’ AGL/119’ MSL.
 Windsock 3’ from DER, 269’ right of centerline, 19’ AGL/46’ MSL.
 RADAR reflector 373’ from DER, 346’ right of centerline, 10’ AGL/37’ MSL.
NOTE: RNAV 1.
NOTE: GPS required.

TAKEOFF MINIMUMS
Rwy 3: Standard with minimum climb of 500’ per NM to 538.
Rwy 8: Standard with minimum climb of 500’ per NM to 538.
Rwy 21: Standard with minimum climb of 500’ per NM to 538, then 275’ per NM to 1400.
Rwy 26: Standard with minimum climb of 500’ per NM to 538, then 380’ per NM to 2100.

DEPARTURE ROUTE DESCRIPTION
TAKEOFF RUNWAY 3: Climb on heading 030° to 538, then left turn direct PPKEO, thence
TAKEOFF RUNWAY 8: Climb on heading 079° to 538, then left turn direct PPKEO, thence
TAKEOFF RUNWAY 21: Climb on heading 210° to intercept course 124° to cross SLPAH at or above 2000, then on track 040° to cross ONOME at or above 3000, at or below 230K, then on track 320° to PPKEO, thence
TAKEOFF RUNWAY 26: Climb on heading 259° to 538, then right turn direct PPKEO, thence
. . . . on (transition) maintain 10000 or lower filed altitude, expect filed altitude 5 minutes after departure.

BARBY TRANSITION (PPKEO1.BARBY)
LAVAS TRANSITION (PPKEO1.LAVAS)
PLACK TRANSITION (PPKEO1.PLACK)
UPOLU POINT TRANSITION (PPKEO1.UPP)
TERMINAL PROCEDURES

DME required. From HUBAP, RNAY 1-GPS required.
DME or RADAR required for procedure entry.

For inop ALS, increase S-ILS 4R all Cts visibility to ½ SM.

MISSED APPROACH: Climb to 540 then climbing right turn to 3000 on heading 220° and on HNL VORTAC R-171 to ALANA INT/HNL 13.9 DME and hold. Missed approach requires minimum climb of 318 feet per NM to 1820.
(If unable to meet climb gradient use S-ILS 4R minimums).

HONOLULU, HAWAII

LOC/DME H-HUM 110.5
Chan 42

APP CRS 042° 8950
Rwy Idg TDZE 8 Apt E lev 13

D-ATIS
127.9 251.15

HCF APPROACH 118.3 269.0

HONOLULU TOWER 118.1 257.8 123.9 273.575 (Rwy 8R/26L)

GND CON 121.9 348.6
CLNC DEL 121.4 281.4

TERMINAL PROCEDURES

ILS Y RWY 4R

DANIEL K INOUYE INTL (HNL) (PHNL)

TERMAL PROCEDURES
RNAV (RNP) Z RWY 4R

For uncompensated Baro-VNAV systems, procedure NA below 17°C or above 54°C. For inop ALS, increase RNP 0.30 Cat A visibility to 1/4 SM and Cat B to 1/8 SM.

MISSED APPROACH: Climb to 580 then climbing right turn to 3000 direct ALANA and hold.

Procedure NA for arrivals at ALANA on V8-21 southbound and on V16 southeast bound.

See planview for multiple IF locations.

Authorization Required

RNAV (RNP) Z RWY 4R

TERMINAL PROCEDURES

D-ATIS 127.9 251.15

HCF APPROACH 118.3 269.0

HONOLULU TOWER 123.9 273.575 (Rwy 8R/26L)

CLNC DEL 121.4 281.4

GND CON 121.9 348.6

MALSR

CLNC DEL

APP CRS 0°

Rwy Idg 8950

TDZE 9

Apt Elev 13
PAC, 8 SEP 2022 to 3 NOV 2022

RNAV (RNP) Z RWY 8L
DANIEL K INOYUE INTL (HNL) (PHNL)

For uncompensated Baro-VNAV systems, procedure NA below 17°C or above 54°C.

MALSR

MISSING APPROACH: Climb to 420 then climbing right turn to 3000 direct ALANA and hold.

D-ATIS
127.9 251.15

HCF APPROACH
118.3 269.0

HONOLULU TOWER
118.1 257.8
123.9 273.575 (Rwy BR/26L)

GND CON
121.9 348.6

CINC DEL
121.4 281.4

ZOBUX
(IAF)
SELIC
210K

MAKOA
(IF)

XUSLY
(IF)

OOKAH
2000
210K
(RF REQ'D)

079° to RW08L

079° to RW08L

163

22R

3100

TERMINAL PROCEDURES

APP CRS
079°
TDZE
Apt Elev
13
13

MALSR

567
1310

ASA RW08L 25 NM
5300

ELEV 13
TDZE 13

VGS and RNAV glidepath not coincident (VGS Angle 3.00°/TCH 71).

See planview for multiple IF locations.

CATEGOR
A
B
C
D

RNP 0.30 DA
343-1/2
330 (400-1/2)

AUTHORIZATION REQUIRED

HONOLULU, HAWAII
Amdt 3 30JAN20

AL-754 (FAA) 21336
Circling Rwy 22R NA at night. Circling NA for Cats A and B northwest of Rwy 8L and 22R. Circling NA for Cats C and D north of Rwy 8L-26R. For inop ALS, increase LNAV Cat E visibility to 2 SM. Circling NA to sec lanes 4W, 8W, 22W, and 26W. HUBAP transition NA for Cat E aircraft. HAURY transition NA for Cat E aircraft.

Procedure NA for arrivals at KEOLA on V12.

Procedure NA for arrivals at GECKO on V4 westbound.

Proceedure NA for arrivals at JULLE on V16-21 eastbound and V20 southeast bound.
TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

RNAV (GPS) Y RWY 8L

DANIEL K INOUYE INTL (HNL) (PHNL)

HONOLULU, HAWAII

APM CRS
Rwy Idg 12312
079°
TDZE 13
Apt Elev 13

RNP APCH
Circling Rwy 22R NA at night. For inop ALS, increase Cats C, D, and E visibility to 1/2 SM. Circling NA to sea lanes 4W, 8W, 22W, and 26W. Circling NA for Cats A and B northwest of Rwy 8L-22R. Circling NA for Cats C and D north of Rwy 8L-26R. OOKAH transition NA for Cats E aircraft.

D-ATIS
127.9 251.15

HCF APPROACH
118.1 257.8

HONOLULU TOWER
123.9 273.575 (Rwy 8R/26L)

CLNC DEL
121.9 348.6

OND CON
121.4 281.4

4 NM Holding Pattern

3000 FT AGL

079° to RW08L

LNAV MDA
480-1/2 467 (500-1/2)

CIRCLING
680-1 667 (700-1)

VGSI and descent angles not coincident (VGSI Angle 3.00/TCH 71).

3600 ALANA

HONOLULU, HAWAII
Amdt 3B 08SEP22

21°19'N-157°55'W
TERMINAL PROCEDURES

LOC RWY 8L

HONOLULU, HAWAII
AL-754 (FAA)
21336

LOC/DMC I-HNL
111.7
Chan 54

APP CRS
079º

Rwy Idg 12312
TDZE 13
Apt Elev 13

DME or DME required.

PAC, 8 SEP 2022 to 3 NOV 2022

Circling Rwy 22R NA at night. Circling NA for Cats A and B northwest
of Rwy 8L and 22R. Circling NA for Cats C and D north of Rwy 8L-26R.
Circling NA to sea lanes 4W, 8W, 22W, and 26W.

D-ATIS
127.9 251.15

HCF APPROACH
118.3 269.0

HONOLULU TOWER
118.1 257.8

GND CON 121.9 348.6

CLNC DEL 121.4 281.4

MALSR

LOC RWY 8L

DANIEL K INOUYE INTL (HNL) (PHNL)

LOCALIZER 111.7
I-HNL 13.9
Chan 54

ALTERNATE MISSED APCH FIX

ALANA

WATER RWSYS

ReIL Rws 4L, 8R, 22L, 22R and 26R
HIHL Rws 4L-22R, 4R-22L, 8L-26R and
8R-26L

079º 5.9 NM
from FAF

FAF to MAP 5.9 NM

KNOTS 60 90 120 150 180

MIN.SEC 5.54 3.56 2.57 2.22 1.58

HONOLULU, HAWAII

Amdt 1C 25FEB21

LOC RWY 8L

21º19'N-157º55'W
TERMINAL PROCEDURES

KAHE POWER PLANT VISUAL RWY 22L

HONOLULU, HAWAII

17117

KAHE POWER PLANT VISUAL APPROACH RWY 22L

PROCEDURE NOT AUTHORIZED AT NIGHT
RESTRICTED TO CAT I AND CAT II AIRCRAFT ONLY
Pilots may expect landing Runway 22R.

RADAR REQUIRED
Weather Mininums: 5100 feet ceiling
and 3 statute miles visibility.
Vertical Guidance Navaid and angle:
PAPI Rwy 22L: 3.44°
WAIALAE GOLF COURSE VISUAL RWY 22L

Radar Required

Weather Minimums: 5100 feet ceiling and 3 statute miles visibility.

Vertical Guidance Navaid and angle:

PAPI Rwy 22L: 3 Radial 4°

TERMINAL PROCEDURES

PROCEDURE NOT AUTHORIZED AT NIGHT
RESTRICTED TO CAT I AND CAT II AIRCRAFT ONLY
Pilots may expect landing Runway 22R.
TERMINAL PROCEDURES

HONOLULU TWO DEPARTURE (OBSTACLE)

DANIEL K INOUYE INTL (HNL) (PHNL)
AL-754 (FAA)
HONOLULU, HAWAII

D-ATIS
127.9 251.15
CLNC DEL
121.4 281.4
GND CON
121.9 348.6
HONOLULU TOWER
118.1 257.8
123.9 273.575 (Rwy 8R/26L)
HCF APPROACH
EAST 124.8 317.6
WEST 118.3 269.0

HONOLULU
114.8 HNL 115.0
Chan 95

MOLOKAI
116.1 MKK 115.0
Chan 108

TERMINAL PROCEDURES

HONOLULU TWO DEPARTURE (OBSTACLE)

DANIEL K INOUYE INTL (HNL) (PHNL)
AL-754 (FAA)
HONOLULU, HAWAII

TAKING MINIMUMS
Rwys 4W, 8W, 22W, 26W: NA-ATC.
Rwys 22L/R, 26R: Standard.
Rwys 4L/R: Standard with minimum climb of 425' per NM to 1900, do not exceed 180K until southeast bound on 155° heading, or 1700-2 1/2 for VCOA.
Rwys 8L: Standard with minimum climb of 310' per NM to 1000, or 1700-2 1/2 for VCOA.
Rwys 8R: Standard with minimum climb of 270' per NM to 1000, or 1700-2 1/2 for VCOA.
Rwys 26L: Standard with minimum climb of 237' per NM to 300, or 1700-2 1/2 for VCOA.

NOTES CONTINUED ON FOLLOWING PAGE

(Notes continued on following page)

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKING RUNWAYS 4L/R, 8L/R: Climbing right turn to 3000 on heading 155° to intercept HNL R-125 to HAUNA INT before proceeding on course, or... .

TAKING RUNWAYS 22L/R, 26L/R: Climbing left turn to 3000 on heading 140° to intercept HNL R-171 to ALANA INT before proceeding on course, or... .

...for visual climb over airport: obtain ATC approval for VCOA when requesting IFR

...for visual climb over airport: obtain ATC approval for VCOA when requesting IFR

clearance. Climb in visual conditions to cross Daniel K. Inouye Intl Airport southbound at

1600, continue climb to 3000 on HNL R-171 to ALANA INT before proceeding on course.

HONOLULU TWO DEPARTURE (OBSTACLE)

HONOLULU, HAWAII

DANIEL K INOUYE INTL (HNL) (PHNL)

PAC, 8 SEP 2022 to 3 NOV 2022
TAKEOFF OBSTACLE NOTES

Rwy 4L: Multiple lights beginning 630’ from DER, 236’ left of centerline, 102’ right of centerline, up to 84’ AGL/92’ MSL.
Light on building 669’ from DER, 394’ left of centerline, 29’ AGL/37’ MSL.
Stack on building 2488’ from DER, 219’ right of centerline, 72’ AGL/80’ MSL.
Multiple trees beginning 1253’ from DER, 209’ left of centerline, 935’ right of centerline, up to 64’ AGL/72’ MSL.
Bush 450’ from DER, 234’ left of centerline, 14’ AGL/22’ MSL.

Rwy 4R: Stack on building, 2442’ from DER, 283’ left of centerline, 72’ AGL/80’ MSL.
Multiple trees beginning 1206’ from DER, 711’ left of centerline, 433’ right of centerline, up to 64’ AGL/72’ MSL.
Multiple lights beginning 1072’ from DER, 399’ left of centerline, 504’ right of centerline, up to 36’ AGL/44’ MSL.
Pole 2110’ from DER, 951’ left of centerline, 59’ AGL/67’ MSL.

Rwy 22L: Multiple bushes beginning 265’ from DER, 396’ right of centerline, up to 17’ AGL/31’ MSL.
Tree 1065’ from DER, 499’ right of centerline, 30’ AGL/38’ MSL.

Rwy 22R: Rod on obstruction light ASR 1451’ from DER, 827’ right of centerline, 76’ AGL/84’ MSL.
Tree 853’ from DER, 308’ right of centerline, 43’ AGL/51’ MSL.

Rwy 26L: Ship 1.1 NM from DER, on centerline, 208’ AGL/208’ MSL.

Rwy 26R: Multiple light poles beginning 2120’ from DER, 813’ right of centerline, up to 105’ AGL/111’ MSL.
TOP ALTITUDE: 5000

TAKEOFF MINIMUMS
Rwy 4L/R, 4W, 8L/R, 8W, 22W, 26W: NA - ATC.
Rwy 22L/R, 26R: Standard.
Rwy 26L: Standard with minimum climb of 237’ per NM to 300.

NOTE: RNAV.
NOTE: RADAR required.
NOTE: GPS required.
NOTE: Turbo-jet and turbo-prop aircraft only.

(NARRATIVE ON FOLLOWING PAGE)
(NOTES CONTINUED ON FOLLOWING PAGE)
DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAYS 22L/R: Climb on heading 222° to intercept course 208° to cross BANZI at or below 5000, thence
TAKEOFF RUNWAY 26L: Climb on heading 259° to intercept course 199° to cross BANZI at or below 5000, thence
TAKEOFF RUNWAY 26R: Climb on heading 259° to intercept course 197° to cross BANZI at or below 5000, thence

. . . . on track 208° to LHAKE, then on track 208° for RADAR vectors to assigned route/fix, maintain 5000 or as assigned by ATC. Expect clearance to filed altitude/flight level within 10 minutes after departure.

NOTE: ALANA departures expect direct/vectors to ALANA/V8/V16/V20/V21.
NOTE: APACK departures expect direct/vectors to APACK/R463.
NOTE: CANON departures expect direct/vectors to CANON/V15.
NOTE: CARRP departures expect direct/vectors to CARRP/A579.
NOTE: CHOKO departures expect direct/vectors to CHOKO/R584/B326.
NOTE: CLUTS departures expect direct/vectors to CLUTS/R465.
NOTE: DANNNO departures expect direct/vectors to DANNNO.
NOTE: DOVRR departures expect direct/vectors to DOVRR/B596.
NOTE: EBBER departures expect direct/vectors to EBBER/R577.
NOTE: FITES departures expect direct/vectors to FITES/R578.
NOTE: GECKO departures expect direct/vectors to GECKO/V4/V12/V16.
NOTE: HAUNA departures expect direct/vectors to HAUNA/V8/V16/V20/V21/LNY.
NOTE: HOOPA departures expect direct/vectors to HOOPA/A450.
NOTE: JULLE departures expect direct/vectors to JULLE/V16/V20/V21.
NOTE: KATHS departures expect direct/vectors to KATHS/A450.
NOTE: KEOLA departures expect direct/vectors to KEOLA/V16.
NOTE: KOA departures expect direct/vectors to KOA.
NOTE: LILIA departures expect direct/vectors to LILIA/V15.
NOTE: OPIHII departures expect direct/vectors to OPIHII/V8/V16/V20/V21.
NOTE: PALAY departures expect direct/vectors to PALAY/V2/V8/LNY.
NOTE: PUPI departures expect direct/vectors to PUPI/V16.
NOTE: SCOON departures expect direct/vectors to SCOON.
NOTE: SYVAD departures expect direct/vectors to SYVAD/V16.
NOTE: THOMA departures expect direct/vectors to THOMA.
NOTE: UPP departures expect direct/vectors to UPP.
NOTE: ZIGIE departures expect direct/vectors to ZIGIE/A331.
TERMINAL PROCEDURES

KEAHI THREE DEPARTURE

(KEAHI3.KEAHI) 17117

NOTE: Departures from Runways 26L/R must complete left turn to assigned heading within 2 NM of runway departure end (HNL 3 DME).

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAYS 22/26 ONLY: Turn left to heading assigned by tower, expect RADAR vectors to intercept HNL R-138; then via HNL R-138 to KEAHI INT, maintain 5000'; then via (transition). Expect clearance to enroute altitude/flight level at JORDA INT or LNY VORTAC.

JORDA TRANSITION (KEAHI3.JORDA): From over KEAHI INT via LNY R-262 and HNL R-125 to JORDA INT.

LANAI TRANSITION (KEAHI3.LNY): From over KEAHI INT via LNY R-262 to LNY VORTAC.

UPOLU TRANSITION (KEAHI3.UPP): From over KEAHI INT via LNY R-262 and HNL R-125 to JORDA INT, thence via UPP R-278 to UPP VORTAC.
DEPARTURE ROUTE DESCRIPTION

Turn right/left to heading assigned by the Tower, expect vectors to KEOLA, maintain 5000; then on
transition. Expect clearance to enroute altitude/flight level at KEOLA.

KATHS TRANSITION (KEOLA3.KATHS): From over KEOLA on HNL R-258 and SOK R-234 to KATHS.

LIHUE TRANSITION (KEOLA3.LIHA): From over KEOLA on SOK R-111 and LIH R-148 to LIH VORTAC.

LILIA TRANSITION (KEOLA3.LILIA): From over KEOLA on track 282° to LILIA.

NONNI TRANSITION (KEOLA3.NONNI): From over KEOLA on HNL R-258 to NONNI.

PUPPI TRANSITION (KEOLA3.PUPPI): From over KEOLA on track 271° to PUPPI.

SOUTH KAUA’I TRANSITION (KEOLA3.SOK): From over KEOLA on SOK R-111 to SOK VORTAC.

TERMINAL PROCEDURES

KEOLA THREE DEPARTURE

A-27A (AA)

DANIEL K. INOUYE INTL (HNL) (PDX)

HONOLULU-HAWAII

NOTE: Chart not to scale.
DEPARTURE ROUTE DESCRIPTION

Turn right/left to heading as assigned by Tower, expect vectors to MKK VORTAC, maintain 5000'; then via (transition). Expect clearance to enroute altitude/flight level at MKK VORTAC. Cross egress fixes ZIGIE, APACK, CLUTS, EBBER, and FITES at assigned cruising altitude, unless otherwise advised by ATC.

APACK TRANSITION (MKK4.APACK): From over MKK VORTAC via MKK R-004 to APACK INT.

CLUTS TRANSITION (MKK4.CLUTS): From over MKK VORTAC via MKK R-040 to CLUTS INT.

EBBER TRANSITION (MKK4.EBBER): From over MKK VORTAC via MKK R-056 to BLUSH INT then via 080° heading and R577 to EBBER INT.

FITES TRANSITION (MKK4.FITES): From over MKK VORTAC via MKK R-056 to BLUSH INT then via 095° heading and R578 to FITES INT.

PULPS TRANSITION (MKK4.PULPS): From over MKK VORTAC via MKK R-108 to PULPS INT.

ZIGIE TRANSITION (MKK4.ZIGIE): From over MKK VORTAC via MKK R-004 to intercept and proceed via OGG R-337 to REXIE DME. Then via RNAV heading 334° to ZIGIE WP.
DEPARTURE ROUTE DESCRIPTION

Turn right/left to heading assigned by Tower, expect vectors to OPIHI, maintain 5000; then on (transition). Expect clearance to enroute altitude/flight level at OPIHI.

CARRP TRANSITION (OPIHI3.CARRP): From over OPIHI right turn to intercept MKK R-254 to SEBYI, then on HNL R-204 to CARRP.

CHOKO TRANSITION (OPIHI3.CHOKO): From over OPIHI right turn to intercept MKK R-254 to SECJI, then on HNL R-241 to BINJO, then on track 240° to CHOKO.

DOVRR TRANSITION (OPIHI3.DOVRR): From over OPIHI on HNL R-187 to SELYY, then on track 153° to DOVRR.
NOTE: Departures from Runways 4L/R and 8L/R must complete right turn to assigned heading within 2 NM of runway departure end. Cross CKH R-240 at or above 2500.

NOTE: Departures Runways 26L/R must complete left turn to assign heading within 2 NM of runway departure end (HNL 3 DME).

TERMINAL PROCEDURES

PALAY THREE DEPARTURE

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

Turn right/left to heading assigned by Tower, expect vectors to PALAY, maintain 5000; then on (transition). Expect clearance to enroute altitude/flight level at LNY VORTAC.

LANAI TRANSITION (PALAY3.LNY): From over PALAY INT on HNL R-110 and LNY R-290 to LNY VORTAC.

MOLOKAI TRANSITION (PALAY3.MKK): From over PALAY INT on MKK R-254 to MKK VORTAC.
DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAYS 8L/R: Climb on heading 079° to 513, then right turn direct PIPLN between 3000 and 5000 at 210K, thence...

...on track 164° to ENSKY, then on track 164° for RADAR vectors to assigned route/fix, maintain 5000 or as assigned by ATC. Expect clearnace to filed altitude/flight level within 10 minutes after departure.

NOTE: ALANA departures expect direct/vectors to ALANA/V8/V16/V20/V21.
NOTE: APACK departures expect direct/vectors to APACK/R463.
NOTE: BINJO departures expect direct/vectors to BINJO/R584/B326.
NOTE: CANON departures expect direct/vectors to CANON/V15.
NOTE: CARRP departures expect direct/vectors to CARRP/A579.
NOTE: CLUTS departures expect direct/vectors to CLUTS/R465.
NOTE: DANNO departures expect direct/vectors to DANNO.
NOTE: DOVRR departures expect direct/vectors to DOVRR/B596.
NOTE: EBBER departures expect direct/vectors to EBBER/R577.
NOTE: FITES departures expect direct/vectors to FITES/R578.
NOTE: GECKO departures expect direct/vectors to GECKO/V4/V12/V16.
NOTE: HAUNA departures expect direct/vectors to HAUNA/V8/V16/V20/V21/LNY.
NOTE: HOOPA departures expect direct/vectors to HOOPA/A450.
NOTE: KATHS departures expect direct/vectors to KATHS/A450.
NOTE: KEOLA departures expect direct/vectors to KEOLA/A16.
NOTE: KOA departures expect direct/vectors to KOA.
NOTE: LILIA departures expect direct/vectors to LILIA/V15.
NOTE: LNY departures expect direct/vectors to LNY.
NOTE: OPIHI departures expect direct/vectors to OPIHI/V8/V16/V20/V21.
NOTE: PALAY departures expect direct/vectors to PALAY/V2/V8/LNY.
NOTE: PUPPI departures expect direct/vectors to PUPPI/V16.
NOTE: SCOON departures expect direct/vectors to SCOON.
NOTE: SYVAD departures expect direct/vectors to SYVAD/V16.
NOTE: THOMA departures expect direct/vectors to THOMA.
NOTE: UPP departures expect direct/vectors to UPP.
NOTE: ZIGIE departures expect direct/vectors to ZIGIE/A331.
TERMINAL PROCEDURES

KAHULUI, HAWAII

APP CRS 024°
Rwy Idg 6995
TDZE 53
Apt Elev 53

MALSR
0.3 NM

MISSED APPROACH: Climb to 3000 direct KRANE and hold.

120.2 322.4 (NORTH)
HCF APPROACH
119.5 225.4 (SOUTH)

MAUI TOWER * 118.7 (CTAF) 0 279.6
GND CON
121.9 279.6
CLNC DEL
120.6 290.5
UNICOM
122.95

MISSED APATH CH.
For uncompensated Baro-VNAV systems, procedure NA below 14°C or above 54°C. When local altimeter setting not received, procedure NA. For inop AIS, increase RNP 0.30 all Cat g visibility to ¾ SM.

ATIS 128.6

KAHULUI (OGG) (PHOG)

RNAV (RNP) Z RWY 2

KAHULUI, HAWAII

APP CRS 024°
Rwy Idg 6995
TDZE 53
Apt Elev 53

MALSR
0.3 NM

MISSED APPROACH: Climb to 3000 direct KRANE and hold.

120.2 322.4 (NORTH) HCF APPROACH
119.5 225.4 (SOUTH)

MAUI TOWER * 118.7 (CTAF) 0 279.6
GND CON 121.9 279.6
CLNC DEL 120.6 290.5
UNICOM 122.95

MISS APATH CH.
For uncompensated Baro-VNAV systems, procedure NA below 14°C or above 54°C. When local altimeter setting not received, procedure NA. For inop AIS, increase RNP 0.30 all Cat g visibility to ¾ SM.

ATIS 128.6

RNAV (RNP) Z RWY 2

KAHULUI, HAWAII

AUTHORIZATION REQUIRED

KAHULUI, HAWAII
Amdt 1A 16JUL20

20*54’N-156*26’W

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

RNAV (GPS) RWY 23
KAHULUI (OGG) (PHOG)

ATIS 128.6
HCF APPROACH
MALU TOWER

GND CON
121.9
279.6

CLNC DEL
120.6
290.5

UNICOM
122.95

APP CRS
234°
Rwy Idg 4980
TDZE 17

Plumb Procedure NA for arrivals at Plumb via V6-22 northwest bound.

MISSED APPROACH: Climbing right turn to 4000 direct ZULUD and hold, continue climb-in-hold to 4000.

KAHULUI, HAWAII
AL-762 (FAA)
20310

RNAV (GPS) RWY 23
KAHULUI (OGG) (PHOG)

PAC, 8 SEP 2022 to 3 NOV 2022

KAHULUI, HAWAII
Amdt 1A 21 JUL 16

20°54’N-156°26’W

HIRL Rwy 2-20
CIRCLING

HIRL Rwy 5-23

500-1
620-1
780-2
1180-3

566-1
726 (800-2)
1126 (1200-3)

460-1/4
443 (500-1/4)
443 (500-1/2)

460-1/2
443 (500-1/2)

460-1/2
443 (500-1/2)

234° to RW23

1200
1900
2700

ZULUD
HEDAT
MOBRE

3.5 NM to RW23
3.05° TCH 50

234°

3.5 NM
2.2 NM
6.1 NM

CATEGORY A
B
C
D
RNAV (GPS) Y RWY 2
KAHULUI (OGG)(PHOG)

TERMINAL PROCEDURES

<table>
<thead>
<tr>
<th>APP CRS</th>
<th>Rwy Idg</th>
<th>TDZE</th>
<th>Apt Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>024°</td>
<td>6995</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

RNP APCH-GPS.

- **When KahuLui altimeter setting not received, procedure NA.**
- **MALSR**
- **MISSED APPROACH:** Climb to 3000 direct RWN 2 and hold.

ATIS

128.6

HCF APPROACH (NORTH)

120.2 322.4

119.5 (CTAF)

225.4

**MAUI TOWER **

118.7 (CTAF) 279.6

GND CON

121.9 279.6

CLNC DEL

120.6 290.5

UNICOM

122.95

Procedure NA for arrivals at KEIKI on V2-21 westbound.
VOR Y RWY 20
KAHULUI (OGG) (PHOG)

TERMINAL PROCEDURES

KAHULUI, HAWAII
AL-762 [FAA] 20310

VORTAC OGG
115.1
Ch 98
APP CRS
194°
Rwy Idg
TDZE
Apt Elev
6995
25
53

ADF or DME required.

ATIS
128.6
HCF APPROACH
120.2 322.4 (NORTH)
119.5 225.4 (SOUTH)
MAUI TOWER *
118.7 (CTAF) 279.6
GND CON
121.9 279.6
CLNC DEL
120.6 290.5
UNICOM
122.95

MISSING APPROACH: Climb to 5000 on OGG R-188 to HARPO INT/ OGG 16.7 DME then right turn on RNY R-095 to KEIKI INT/17 DME and hold.

PROCEDE NA for arrival on VOR airway radials 320 OW 069.

REMAIN WITHIN 10 NM

MISSED APPROACH: Climb to 5000 on OGG R-188 to HARPO INT/ OGG 16.7 DME then right turn on RNY R-095 to KEIKI INT/17 DME and hold.

CATEGORY
A
B
C
D
S-20
600-1
575 (600-1)
600-13/4
575 (600-1 3/4)

CIRCLING
600-1
567 (600-1)
620-1
567 (600-1)
740-2
687 (700-2)
1140-3
1087 (1100-3)

HRL Rwy 2-20
MRL Rwy 5-23

20°54’N-156°26’W

PAC, 8 SEP 2022 to 3 NOV 2022
When visual approaches to RWY 2 are in progress, arriving aircraft may be cleared for a "Smoke Stack Visual Runway 2 Approach". Aircraft inbound via:

LANAI: Proceed to mid-Maalaea Bay via a route on or south of the LNY VORTAC R-085, thence direct to the KNUI Radio Tower, thence....

MAKE'ENA: Proceed to the KNUI Radio Tower, thence.......intercept the RWY 2 extended centerline at or prior to the Sugar Mill Smoke Stacks and proceed to the airport.
TOP ALTITUDE: ASSIGNED BY ATC

NOTICE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 2: Climb on heading 024° to 1400 then climbing right turn via OGG R-195 to BEACH INT.
TAKEOFF RUNWAY 5: Climb on heading 054° to 2500 then climbing right turn via OGG R-195 to BEACH INT.
TAKEOFF RUNWAYS 20, 23: Climbing left turn via OGG R-195 to BEACH INT.

HARPO TRANSITION (BEACH4.HARPO): From over BEACH INT on KOA R-323 to HARPO INT.
LANAI TRANSITION (BEACH4.LNY): From over BEACH INT on LNY R-090 to LNY VORTAC.
TERMINAL PROCEDURES

NOTE: RNAV 1.
NOTE: RADAR required.
NOTE: GPS required.
NOTE: Turbojet and turboprop aircraft only.
NOTE: APACK departures expect direct/vectors to APACK/R463.
NOTE: CANON departures expect direct/vectors to CANON.
NOTE: CARRP departures expect direct/vectors to CARRP/A579.
NOTE: CHOKO departures expect direct/vectors to CHOKO.
NOTE: CLUTS departures expect direct/vectors to CLUTS/R465.
NOTE: DANNO departures expect direct/vectors to DANNO.
NOTE: DOVRR departures expect direct/vectors to DOVRR/B596.
NOTE: EBBER departures expect direct/vectors to EBBER/R577.
NOTE: JULLE departures expect direct/vectors to JULLE.
NOTE: KOA departures expect direct/vectors to KOA VORTAC.
NOTE: LILIA departures expect direct/vectors to LILIA.
NOTE: NONNI departures expect direct/vectors to NONNI.
NOTE: PUPPI departures expect direct/vectors to PUPPI.
NOTE: SAKKI departures expect direct/vectors to SAKKI.
NOTE: SCOON departures expect direct/vectors to SCOON.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 2: Climb heading 024° to 554, then direct HIAKA, thence....
.....on track 024° to cross ROSAH at or above 1600, then on track 024° for RADAR vectors to assigned route/fix, maintain 16000 or as assigned by ATC. Expect clearance to filed altitude/flight level within 10 minutes after departure.

TAKEOFF MINIMUMS
Rwy 2: Standard with minimum climb of 500’ per NM to 554.
Rwys 5, 20, 23: NA - ATC.

NOTE: Chart not to scale.
MAUI FIVE DEPARTURE

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAYS 2 AND 5 ONLY: After takeoff, all aircraft fly heading 360°, expect radar vectors west of Maui Island to assigned fix/route. Cross the LNY R-322 at assigned altitude. When assigned above 14000’, cross at or above 14000’.

LOST COMMUNICATIONS: If not in contact with Departure Control 1 minute after crossing the shoreline, climb northbound via the OGG R-010 until reaching at least 3500’. Then reverse course to the right direct OGG VORTAC. Then via V24 to LNY VORTAC. Cross OGG VORTAC at or above 6700’.
TERMINAL PROCEDURES

(NPLII2.SAKKI) 18032

NPLII TWO DEPARTURE (RNAV)

KAHUULI (OGG)(PHOG)

KAHUULI, HAWAII

ATIS 128.6
CLNC DEL
120.6 290.5
GND CON
121.9 279.6
MAUI TOWER *
116.7 (CTAF) 279.6
HCF APPROACH
NORTH 120.2 322.4
SOUTH 119.5 225.4

TOP ALTITUDE:
ASSIGNED BY ATC

NOTE: RNAV 1.
NOTE: GPS required.

TAKEOFF MINIMUMS

Rwys 5, 20, 23, NA - Air Traffic.
Rwy 2: Standard with minimum climb of 355' per NM to 11200.

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 2: Climb to assigned altitude on heading 024° to intercept course 320° to cross WMAUI at or above 3200, and on track 276° to cross ROXZZ at or above 4000, and on track 251° to cross ISSNO at or above 7000, and on track 249° to cross AARES at or above 14000, and on track 249° to SAKKI.

(PAC, 8 SEP 2022 to 3 NOV 2022)
TERMINAL PROCEDURES

(ONOHI2.ONOH) 18032
ONOHI TWO DEPARTURE
AL-762 (FAA)

ATIS 128.6
CLNC DEL
120.6 290.5
GND CON
121.9 279.6
MAUI TOWER*
118.7 (CTAF) 279.6
HCP APPROACH
NORTH 120.2 322.4
SOUTH 119.5 222.4

NOTE: DME required.

TAKEOFF MINIMUMS
Rwy 23: NA- obstacles and ATC.
Rwy 2: Standard with ATC climb of 480’ per NM to 2200.
Rwy 5: Standard with ATC climb of 480’ per NM to 2900.
Rwy 20: Standard with minimum climb of 480’ per NM to 7000.

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 2: Climb on heading 024° to 2100 then climbing right turn to 7000 to ONOH/OGG 23 DME via heading 115° and OGG R-085.

TAKEOFF RUNWAY 5: Climbing left turn on heading 024° to 2100 then climbing right turn to 7000 to ONOH/OGG 23 DME via heading 115° and OGG R-085.

TAKEOFF RUNWAY 20: Climb on heading 204° to 2100 then climbing left turn to 7000 to ONOH/OGG 23 DME via direct OGG VORTAC and OGG R-085.

BARBY TRANSITION (ONOHI2.BARBY): From over ONOH/OGG 23 DME on OGG R-085 to BARBY/OGG 25 DME.

ONOHI TWO DEPARTURE
(ONOHI2.ONOH) 20AUG15
TERMINAL PROCEDURES

PUHEE ONE DEPARTURE (RNAV)

TOP ALTITUDE: 16000

NOTE: RNAV 1.
NOTE: RADAR required.
NOTE: GPS required.
NOTE: Turbojet and turboprop aircraft only.

TAKEOFF MINIMUMS
Rwy 20: Standard with minimum climb of 500' per NM to 554.
Rwys 2, 5, 23: NA - ATC.

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 20: Climb heading 204° to 554, then left turn direct PUHEE, thence... . . . on track 183° to cross TAAKA at or above 2600, then on track 183° for RADAR vectors to assigned route/fix, maintain 16000 or as assigned by ATC. Expect clearance to filed altitude/flight level within 10 minutes after departure.
NOTE: RADAR required.

TAKEOFF MINIMUMS
Rwy 2: Standard with minimum climb of 500' per NM to 8100.
Rwy 5: Standard with minimum climb of 500' per NM to 8100.
Rwy 20: Standard with minimum climb of 490' per NM to 8100.
Rwy 23: NA - Obstacles.

DEPARTURE ROUTE DESCRIPTION
TAKEOFF RUNWAY 2: Climb heading 024° (or ATC assigned heading 310° CW 053°); thence . . .
TAKEOFF RUNWAY 5: Climbing heading 054° (or ATC assigned heading 307° CW 054°); thence . . .
TAKEOFF RUNWAY 20: Climb heading 204° (or ATC assigned heading 169° CW 204°); thence . . .
TAKEOFF RUNWAY 23: NA - Obstacles.

. expect RADAR vectors to join assigned route. Maintain assigned altitude; expect filed altitude/flight level 5 minutes after departure.

LOST COMMUNICATIONS: If not in contact with departure control 1 minute after departure, climb southbound to join V2 to LNY VORTAC, then on assigned route.
(SWEEP2.SWEEP) 18032

SWEEP TWO DEPARTURE

ATIS 128.6
CINC DEL
120.6 290.5
GND CON
121.9 279.6
MAUI TOWER*
118.7 [CTAF] 279.6
MAUI DEP CON
NORTH 120.2 322.4
SOUTH 119.5 225.4
HCF APPROACH
NORTH 120.2 322.4
SOUTH 119.5 225.4

TOP ALTITUDE:
6000

TAKEOFF MINIMUMS
Rwy 23: NA Obstacle and ATC.
Rwys 2, 5: Standard with ATC climb of 480’ per NM to 2100.
Rwy 20: Standard with minimum climb of 480’ per NM to 2100.

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 2: Climb heading 024° to 2100 then climbing right turn to 6000 via heading 095° to intercept OGG VORTAC R-069 (V11) to SWEEP INT/OGG 24 DME.

TAKEOFF RUNWAY 5: Climbing left turn heading 024° to 2100 then right turn to 6000 via heading 095° to intercept OGG VORTAC R-069 (V11) to SWEEP INT/OGG 24 DME.

TAKEOFF RUNWAY 20: Climb heading 204° to 2100 then climbing left turn to 6000 direct OGG VORTAC then via OGG R-069 (V11) to SWEEP INT/OGG 24 DME.
For uncompensated Baro-VNAV systems, procedure NA below 6°C (43°F) or above 48°C (119°F). RF required. GPS required. For inop ALS, increase RNP 0.30 all cats visibility to 1/2 mile.

TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

KAILUA-KONA, HAWAII

APP CRS

174°

Rwy Idg 11000

TDZE 47

Apt Elev 47

AL-5761 (FAA) 22083

RNAV (RNP) Z RWY 17

ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)

ATIS

127.4

HCF CENTER

118.45 278.3

KONA TOWER

120.3 (CTAF) 254.3

GND CON

121.9

CLNC DEL

118.6

MALSR

MISSING APPROACH: Climb to 5000 on track 174° to WOPNA and right turn to NANLE, and on track 358° to ANDES and hold.

Procedure NA for arrivals on UPP VOR/TAC airway radials 200 CW 287°.

Procedure NA for arrivals at MUE VOR/TAC on V3 northeast bound.

AUTHORIZATION REQUIRED

KAILUA-KONA, HAWAII

Orig-B 24MAY18

ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)

19°44'N-156°03'W

RNAV (RNP) Z RWY 17

PAC, 8 SEP 2022 to 3 NOV 2022
Terminal Procedures

RNAV (GPS) RWY 35

Ellison Onizuka Kona Intl at Keahole (KOA) (PHKO)

App CRS
- Rw 1dg: 11000
- TDZE: 37
- Apt Elev: 47

RNP APCH

Circling NA east of Rw 17-35. WAAS VNAV NA. For uncompensated Baro-VNAV systems, LNAV/VNAV NA below 17°C or above 54°C.

Missed Approach: Climb to 500 then climbing left turn to 5000 direct AMERY and hold.

<table>
<thead>
<tr>
<th>ATIS</th>
<th>HCF Center</th>
<th>KONA TOWER</th>
<th>GND CON</th>
<th>CLNC DEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.4</td>
<td>118.45 278.3</td>
<td>120.3 (CTAF) 254.3</td>
<td>121.9</td>
<td>118.6</td>
</tr>
</tbody>
</table>

Missed APCH Fix

- 5 NM AMERY

Procedure NA for arrival at KOA VORTAC on B595 northbound.

Table

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNAV/VNAV DA</td>
<td>366-1</td>
<td>329 (400-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNAV MDA</td>
<td>420-1</td>
<td>383 (400-1)</td>
<td>420-1 3/8</td>
<td>383 (400-1 3/8)</td>
<td></td>
</tr>
<tr>
<td>Circling</td>
<td>520-1</td>
<td>473 (500-1)</td>
<td>600-2</td>
<td>553 (600-2)</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **ELEV 47**
- **TDZE 37**

Kailua-Kona, Hawaii

Amend 2: 19 July 2018

PAC, 8 Sep 2022 to 3 Nov 2022
LOC BC RWY 35
KAILUA-KONA, HAWAII

TERMINAL PROCEDURES

ATIS 127.4
HCF CENTER 118.45 278.3
KONA TOWER 124.3 (CTAF) 254.3
GND CON 121.9
CLNC DEL 118.6

Circling NA east of Rwy 17-35.
DME required.

MISSED APPROACH: Climbing left turn to 5000 on KOA VORTAC R-294 to ANDES/KOA VORTAC 11.7 DME and hold, continue climb-in-hold to 5000.

ALTERNATE MISSED APCH FIX

LOCBC RWY 35
ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)

BACK COURSE

ANDES KOA 11.7
HCF 278.3

KONA 112.1 KOA 120.3 (CTAF) 254.3

JENSO KOA 0.5
HOXLY KOA 4.9

LOCUZIER 109.7

Use I-KOA DME when on localizer course.
Disregard glide slope indications.

Remain within 10 NM

* Maintain 4700 feet or above until established outbound for procedure turn.

VGSI and descent angles not coincident
(VGSI Angle 3.00/TCH 71).
TERMINAL PROCEDURES

VOR or TACAN RWY 35
ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)

ISOMETRIC PROCEDURES

Circling NA east of Rwy 17-35.

DME REQUIRED

MISSED APPROACH: Climbing left turn to 2000 on KOA VORTAC R-294 to ANDES/11.7 DME and hold.

ATIS 127.4
HCF CENTER 118.45 278.3
KONA TOWER 120.3 (CTAF) 254.3
GND CON 121.9
CLNC DEL 118.6

One Minute Holding Pattern

VGSI and descent angles not coincident (VGSI Angle 3.00/TCH 71).

CATEGORY A B C D E
S-35 600-1 563 (600-1) 600-1½ 563 (600-1½)
CIRCLING 600-1 553 (600-1) 600-1½ 553 (600-1½) 600-2 553 (600-2)

KAILUA-KONA, HAWAII
Orig-D 09NOV20

19°44’N-156°03’W

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

(AMERY4.AMERY) 20254
AMERY FOUR DEPARTURE

EILLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)
AL-5761 [FAA]
KAILUA-KONA, HAWAII

ATIS
127.4
CLCNC DEL
118.6
KONA TOWER
120.3 (CTAF) 254.3
HCF CENTER
118.45 278.3

MALI
115.1 OGG
Chan 98

UPOLU POINT
112.3 UPP
Chan 70

ROWIN
N20°08.80’
W156°25.07’
P-2

TYPHO
N20°00.06’
W156°28.79’
P-2

AMERY
N19°57.31’
W156°24.55’
9000 for ROWIN Transition

ANDERES
N19°49.69’
W156°12.87’

KONA
112.1 KOA
Chan 58

TAKEOFF MINIMUMS
Rwys 17, 35: Standard with minimum climb of
300’ per NM to 7500.

NOTE: DME required.
NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 17: Climb heading 174° to 500, then climbing right turn to intercept
KOA R-294 to AMERY INT, Thence.

TAKEOFF RUNWAY 35: Climb heading 354° to 500, then climbing left turn to intercept
KOA R-294 to AMERY INT, Thence.

. . . . via transition.

ROWIN TRANSITION (AMERY4.ROWIN): From AMERY INT on OGG R-168 to ROWIN INT.

TYPHO TRANSITION (AMERY4.TYPHO): From AMERY INT on KOA R-294 to TYPHO INT.

AMERY FOUR DEPARTURE
(AMERY4.AMERY) 07DEC17

EILLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

(CRISI2.CRISI) 20254
ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)
CRISI TWO DEPARTURE (RNAV) AL-5761 (FAA) KAILUA-KONA, HAWAII

ATIS 127.4
CLNC DEL 118.6
KONA TOWER* 120.3 254.3
HCF CENTER 118.45 278.3

CRISI △ 10000

NOTE: DME/DME/IRU or GPS required.
NOTE: RADAR required.
NOTE: RNAV 1

TAKEOFF MINIMUMS
Rwys 17, 35: Standard.

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 17: Climb on heading 174° to 560 then climbing right turn to 10000 direct CRISI.
TAKEOFF RUNWAY 35: Climb on heading 354° to 560 then climbing left turn to 10000 direct CRISI.

CRISI TWO DEPARTURE (RNAV)
(CRISI2.CRISI) 07DEC17
ELLISON ONIZUKA KONA INTL AT KEAHOLE (KOA) (PHKO)

PAC, 8 SEP 2022 to 3 NOV 2022
NOTE: GPS required.
NOTE: RNAV 1.
NOTE: Turbojet and turboprop aircraft only.

TAKING OFF MINIMUMS
Rwy 17, 35: Standard with minimum climb of 500’ per NM to 548.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 17: Climb on heading 174° to 548, then climbing right turn direct ONIZU, thence...

TAKEOFF RUNWAY 35: Climb on heading 354° to 548, then climbing left turn direct ONIZU, thence...

...on transition, maintain 5000, expect further clearance to filed altitude five (5) minutes after departure.

BARBY TRANSITION (ONIZU1.BARBY)
JULLE TRANSITION (ONIZU1.JULLE)
MAKEN TRANSITION (ONIZU1.MAKEN)
UPOLU POINT TRANSITION (ONIZU1.UPP)
RNAV (GPS)-A
KALAUPAPA (LUP) (PHLU)

Circling NA southeast of Rwy 5-23. Procedure NA at night. Use Kaunakakai altimeter setting.

MISSED APPROACH: Climbing right turn to 5000 direct WEPU and hold, continue climb-in-hold to 5000.

HCF CENTER 124.1 317.5

CTAF 122.9
RNAV (GPS)-B
KALAUPAPA (LUP) (PHLU)

TERMINAL PROCEDURES

APP CRS 101°

Rwy Idg TDZE Apt Elev
N/A N/A 24

Δ NA

Circling NA southeast of Rwy 5-23.
Procedure NA at night.
Use Kaunakakai altimeter setting.

MISSED APPROACH: Climbing left turn to 2900 direct WEKLO and hold.

HCF CENTER 124.1 317.5

CTAF 122.9

ELEV 24

101° to ZOKLO

MIRL Rwy 5-23

KALAUPAPA, HAWAII
Orig 20JUN19

AL-6993 (FAA) 20310

RNAV (GPS)-B
KALAUPAPA (LUP) (PHLU)

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

HCF CENTER
124.1 317.5
CTAF
122.9

MOLOKAI
116.1 MKK
Chan 108
N21°08.29’-W157°10.05’
P-2

TAKEOFF MINIMUMS
Rwy 5: Standard.
Rwy 23: Standard with minimum climb of 400’ per NM to 430 or 3200-3 for climb in visual conditions.

TAKEOFF OBSTACLE NOTES
Rwy 5: Terrain beginning 52’ from DER, 85’ right of centerline, 27’ MSL. Bush 286’ from DER, 198’ right of centerline, 17’ AGL/34’ MSL.
Rwy 23: Bush 163’ from DER, 92’ right of centerline, 4’ AGL/28’ MSL.

NOTE: Chart not to scale

DEPARTURE ROUTE DESCRIPTION
TAKEOFF RUNWAY 5: Climbing left turn to 4000 heading 271° to intercept MKK R-035 to MKK VORTAC, Thence . . .
TAKEOFF RUNWAY 23: Climbing right turn to 4000 heading 282° to intercept MKK R-010 to MKK VORTAC, Thence . . . or for climb in visual conditions, cross Kalaupapa Airport southwest bound at or above 3100 MSL then proceed on MKK R-057 to MKK VORTAC.

.Climb in MKK VORTAC holding pattern to cross MKK VORTAC at or above MEA before proceeding enroute.
NA

Circling NA northwest of Rwy 4-22.
When local altimeter setting not received, procedure NA.
DME/DME RNP-0.3 NA.

TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

RNAV (GPS) RWY 4

WAIMEA-KOHALA (MUE) (PHMU)

KAMUELA, HAWAII

<table>
<thead>
<tr>
<th>APP CRS</th>
<th>Rwy Idg</th>
<th>TDZE</th>
<th>Apt Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>055°</td>
<td>5197</td>
<td>2671</td>
<td>2671</td>
</tr>
</tbody>
</table>

AWOS-3PT

120.0

HCF CENTER

118.45 278.3

CTAF

122.9

ELEV

2671

TDZE

2671

MSA KUKUI 25 NM

[IAF] TAMMI

[IAF] MYNAH

[IAF] KONIA

[IF] CORGA

[FAF] KOKIA

[MAP] KOKIA

[MAP] KUKUI

[MAP] CORNA

[MAP] KOKIA

5000 LICEP

fr 057° TIGAH

5 NM 057° 23°

3675

ELEV 6626

3946

3513

2754

2694

2971

3279

5779

8271

7.5 NM 1.5 NM to KUKUI

3.00° TCH 45

3.00°

KUKUI

5768

13796

5513

3946

5779

13796

1.5 NM

0.5 NM

CATEGOR

A

B

C

D

LNAV MDA

3220-1 549 (600-1) 3220-156 549 (600-156)

CIRCLING

3520-1/4 849 (900-1/4) 3580-23/4 909 (1000-23/4) 3940-3 1269 (1300-3)

KAMUELA, HAWAII

Ampl 1B 27JAN22

WAIMEA-KOHALA (MUE) (PHMU)

RNAV (GPS) RWY 4

PAC, 8 SEP 2022 to 3 NOV 2022

20°00'N-153°40'W
CIRCLING NA northwest of Rwy 4-22. When local altimeter setting not received, procedure NA.

MISSING APPROACH: Climb to 5000 ft on MUE VOR/DME R-057 to TIGAH INT/MUE 13.2 DME and hold.

AWOS-3PT 120.0
HCF CENTER 118.45 278.3
CTAF 122.9

Procedure NA for arrivals at MYNAH on V11 southbound.

VGS and descent angles not coincident (VGS Angle 2.50/TC 43).

One Minute Holding Pattern

MUE 0.2

MUE R-057

MUE VOR/DME

NOHEA MUE

0.2

5000

TIGAH

5197 13.0

054° 5 NM from FAF

MIRL Rwy 4-22

REIL Rwys 4 and 22

KAMUELA, HAWAII

Amnd 1C 27JAN22

20°00′N-155°40′W

PAC, 8 SEP 2022 to 3 NOV 2022
When local altimeter not received, procedure NA.
Circling NA northwest of Rwy 4-22.

MISSING APPROACH: Climb to 5000 via MUE R-234 to JASON INT/12.5 DME and hold.

AWOS-3PT

- **120.0**

HCF CENTER

- **118.45**
- **278.3**

CTAF

- **122.9**

KAMUELA, HAWAII

ORIG-B 2022AN22

20°00'N 155°40'W

TERMINAL PROCEDURES

AL-5306 (FAA)

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

VOR/DME RWY 4R

KALAELOA (JOHN RODGERS FLD) (JRF) (PHJR)

ATIS 119.8
HCF APP CON 118.3 269.0
KALAELOA TOWER 132.6 (CTAF) 340.2
GND CON 123.8 336.4
CLNC DEL 121.7 380.5

Circling NA north of Rwy 4R-22L.
Inop table does not apply.

Procedure NA for arrivals at GECKO via V16 southeast bound.

CATEGORY
S-4R
CIRCLING

KAPOLEI, HAWAII
Amendt 1A 05NOV20

PAC, 8 SEP 2022 to 3 NOV 2022

TERMINAL PROCEDURES

VOR/DME RWY 4R

KALAELOA (JOHN RODGERS FLD) (JRF) (PHJR)

ATIS 119.8
HCF APP CON 118.3 269.0
KALAELOA TOWER 132.6 (CTAF) 340.2
GND CON 123.8 336.4
CLNC DEL 121.7 380.5

Circling NA north of Rwy 4R-22L.
Inop table does not apply.

Procedure NA for arrivals at GECKO via V16 southeast bound.

CATEGORY
S-4R
CIRCLING

KAPOLEI, HAWAII
Amendt 1A 05NOV20

PAC, 8 SEP 2022 to 3 NOV 2022
DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 11: Climb on heading 107° to 540, then climbing right turn direct JELIE. Cross JELIE between 2300 and 3000, at or below 230K, thence . . .
TAKEOFF RUNWAY 22L: Climb on heading 224° to 530, then climbing left turn direct JELIE. Cross JELIE between 2300 and 3000, at or below 230K, thence . . .

. . . (transition), maintain ATC assigned altitude. Expect filed altitude 10 minutes after departure.

APACK TRANSITION (JELIE1.APACK)
CLUTS TRANSITION (JELIE1.CLUTS)
EBBER TRANSITION (JELIE1.EBBER)
FITES TRANSITION (JELIE1.FITES)
KEOLA TRANSITION (JELIE1.KEOLA)
MOLOKAI TRANSITION (JELIE1.MKK)
UPOLU POINT TRANSITION (JELIE1.UPP)
ZIGIE TRANSITION (JELIE1.ZIGIE)
RNAV (GPS)-B

MOLOKAI (MKK) (PHMK)

RNAV (GPS)-B

KAUNAKAKAI, HAWAII

APP CRS

- Rwys: N/A
- TDZE: N/A
- Apt Elev: 454

RNP APCH:

- Circling to Rwys 17, 23 NA at night.
- Circling NA east of Rwys 35 and southeast of Rwys 23.
- Final approach course offset 12.01°.

ATIS

- 128.2

HCF CENTER

- 124.1 317.5

MOLOKAI TOWER

- 125.7 (CTAF)
- 306.2

GND CON

- 121.9

Procedure NA for arrivals at PALAY on V8 westbound.

Procedure NA for arrival on LNY VORTAC airway radials 278 CW 063.
TERMINAL PROCEDURES

KAUNAKAKAI, HAWAII

VOR or TACAN-A
MOLOKAI (MKK) (PHMK)

ATIS 128.2
HCF CENTER 124.1 317.5
MOLOKAI TOWER 125.7 (CTAF) 306.2
GND CON 121.9

MISSED APPROACH: Climbing left turn to 4000 on heading 360° and on MKK VORTAC R-030 to HAPAI INT/MKK 10 DME and hold, continue climb-in-hold to 4000.

Remain within 10 NM

WUBAL MKK 2.4
MAVGAN MKK 3.8

CATEGORY A B C D
CIRCLING 1940-1 1486 (1500-1 1486 (1500-1 1940-3 1486 (1500-3)
1940-1½ 1486 (1500-1½) 1486 (1500-1½) 1940-3 1486 (1500-3)
1940-3 1486 (1500-3)

WUBAL FIX MINIMUMS (DME REQUIRED)

REIL Rwy 5
MIRL Rwy 5-23 and 17-35

DEF to MAP 3.8 NM

KAUNAKAKAI, HAWAII
Amddt 17A 05NOV20

21°09’N-157°06’W

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

KAUNAKAKAI ONE DEPARTURE (OBSTACLE)

MOLOKAI (MKK) (PHMK)

SL-759 (FAA) KAUNAKAKAI, HAWAII

ATIS
128.2
GND CON
121.9

MOLOKAI TOWER
125.7 306.2
HCF CENTER
124.1 317.5

MOLOKAI
116.1 MKK
Chan 108
N21°08.29' W157°10.05'

P-2

NOTE: Chart not to scale.

TAKING MINIMUMS
Rwy 17: Standard.
Rwy 5: 300-1 with minimum climb of 325’ per NM to 1500 or standard
with minimum climb of 540’ per NM to 800 or 1500-2 ½ for
climb in visual conditions.
Rwy 35: 300-1 or standard with minimum climb of 535’ per NM to 800.
Rwy 23: Standard with minimum climb of 435’ per NM to 1500 or
1500-2 ½ for climb in visual conditions.

DEPARTURE ROUTE DESCRIPTION

TAKING OFF RUNWAY 5: Climbing left turn heading 340° to 1000 then climbing left
turn direct MKK VORTAC, thence. . .
TAKING OFF RUNWAY 17: Climbing heading 169° to 1300 then climbing right turn direct
MKK VORTAC, thence. . .
TAKING OFF RUNWAY 23: Climbing left turn heading 170° to 1700 then climbing right
turn direct MKK VORTAC, thence. . .
TAKING OFF RUNWAY 35: Climbing heading 349° to 1000 then climbing left turn direct
MKK VORTAC, thence. . .

VCOA RUNWAYS 5 and 23: Obtain ATC approval for VCOA when requesting IFR
clearance. Climb in visual conditions to cross Molokai Airport southwest bound at or
above 1800 on MKK R-067 to MKK VORTAC, thence. . .
. . . . climb in MKK VORTAC hold pattern to cross MKK at or above MEA/MCA for
route of flight.

KAUNAKAKAI, HAWAII

MOLOKAI (MKK) (PHMK)

HMK, MKK 29MAY14

PAC, 8 SEP 2022 to 3 NOV 2022
TAKEOFF OBSTACLES NOTES

Rwy 5: Rising terrain and vehicles on roadway beginning 14’ from DER, 238’ right of centerline, up to 17’ AGL/476’ MSL.
Vehicles on roadway beginning 28’ from DER, 484’ left of centerline, up to 17’ AGL/509’ MSL.
Multiple fences and bushes beginning 49’ from DER, 95’ left of centerline, up to 21’ AGL/480’ MSL.
Multiple fences and bushes beginning 437’ from DER, 65’ right of centerline, up to 31’ AGL/490’ MSL.
Multiple trees and bushes beginning 735’ from DER, 496’ left of centerline, up to 27’ AGL/551’ MSL.
Multiple bushes and vehicles on roadway beginning 950’ from DER, left and right of centerline, up to 17’ AGL/552’ MSL.
Electrical system 1367’ from DER, 78’ right of centerline, 35’ AGL/528’ MSL.
Multiple towers, poles and trees beginning 1887’ from DER, 33’ right of centerline, up to 43’ AGL/602’ MSL.
Multiple towers, poles and trees beginning 2386’ from DER, 644’ left of centerline, up to 60’ AGL/617’ MSL.

Rwy 17: Bush 46’ from DER, 266’ right of centerline, 13’ AGL/443’ MSL.
Vehicles on roadway beginning 124’ from DER, 505’ left of centerline, up to 17’ AGL/443’ MSL.
Vehicles on roadway beginning 484’ from DER, 590’ right of centerline, up to 17’ AGL/443’ MSL.

Rwy 23: Trees beginning 691’ from DER, 491’ left of centerline, up to 77’ AGL/470’ MSL.
Trees beginning 1.9 NM from DER, 2279’ left of centerline, up to 60’ AGL/880’ MSL.
Trees beginning 2.2 NM from DER, 541’ left of centerline, up to 60’ AGL/1208’ MSL.

Rwy 35: Bush 28’ from DER, 288’ left of centerline, 12’ AGL/461’ MSL.
Bush 48’ from DER, 118’ right of centerline, 14’ AGL/463’ MSL.
Fence beginning 70’ from DER, on centerline through 35’ left of centerline, 4’ AGL/460’ MSL.
Multiple bushes vehicles on roadway and trees beginning 107’ from DER, 48’ right of centerline, up to 65’ AGL/514’ MSL.
Bushes beginning 133’ from DER, 34’ left of centerline, up to 26’ AGL/489’ MSL.
Bushes beginning 1170’ from DER, 259’ right of centerline, up to 15’ AGL/514’ MSL.
Trees beginning 2286’ from DER, 407’ right of centerline, up to 90’ AGL/615’ MSL.
Trees beginning 2942’ from DER, 75’ right of centerline, up to 123’ AGL/648’ MSL.
TERMINAL PROCEDURES

BLUSH TWO DEPARTURE

<table>
<thead>
<tr>
<th>ATIS</th>
<th>128.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND CON</td>
<td>121.9</td>
</tr>
<tr>
<td>MOLOKAI TOWER</td>
<td>125.7 306.2</td>
</tr>
<tr>
<td>HCF CENTER</td>
<td>124.1 317.5</td>
</tr>
</tbody>
</table>

MOLOKAI (MKK) (PHMK)

KAUNAKAKAI, HAWAII

TAKOFF MINIMUMS

- Rwy 17, 23, 35: NA-ATC.
- Rwy 5: 300-1 with minimum climb of 325' per NM to 1500 or standard with minimum climb of 540' per NM to 800.

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 5: Climbing left turn to 5000 on heading 360° and CKH VORTAC R-075 to BLUSH INT/CKH 58 DME.
TERMINAL PROCEDURES

(HAPA3.HAPA1) 18312

HAPA THREE DEPARTURE

MOLOKAI (MKK) (PHMK)
KAUNAKAKAI, HAWAII

ATIS
128.2
GND CON
121.9
MOLOKAI TOWER *
125.7 306.2
HCF CENTER
124.1 317.5

TERMINAL PROCEDURES

MOLOKAI
116.1 MKK
Chan 108
N21°08.29’ W157°10.05’
P-2

LANAI
117.7 LNY
Chan 124

** TAKEOFF MINIMUMS **
 Rwys 17, 23, 35: NA-ATC.
 Rwy 5: 300-1 with minimum climb of 325' per NM to 1500 or
 standard with minimum climb of 540' per NM to 800.

NOTE: DME required.
NOTE: Chart not to scale

DEPARTURE ROUTE DESCRIPTION

** TAKEOFF RUNWAY 5: ** Climbing left turn heading 340° and MKK VORTAC R-030 to
HAPA/MKK 10 DME, thence. . . .

. . . . on assigned transition.

** BAMBO TRANSITION (HAPA3.BAMBO): ** From over HAPA/MMK 10 DME on MKK VORTAC
10 DME Arc CCW to DAKKL/MMK 10 DME, then on MKK R-300 to BAMBO/MMK 25 DME.

** LOKIE TRANSITION (HAPA3.LOKIE): ** From over HAPA/MMK 10 DME on MKK VORTAC
10 DME Arc CCW to LOKIE INT/MMK 10 DME.

** MOLOKAI TRANSITION (HAPA3.MKK): ** From over HAPA/MMK 10 DME, left turn heading 180°
and MKK R-030 to MKK VORTAC.

HAPA THREE DEPARTURE

(HAPA3.HAPA1) 29MAY14

KAUNAKAKAI, HAWAII
MOLOKAI (MKK) (PHMK)

PAC, 8 SEP 2022 to 3 NOV 2022
NOTE: RNAV 1.
NOTE: GPS required.
NOTE: RADAR required.

TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

TAKING MINIMUMS

Rwy 5, 35: NA: Air Traffic.
Rwy 17: Standard with minimum climb of 500' per NM to 3000.
Rwy 23: Standard with minimum climb of 415' per NM to 1900.

DEPARTURE ROUTE DESCRIPTION

TAKING RUNWAY 17: Climb on heading 169° to intercept course 196° to cross KALAE at or above 3000 and at or below 230K, thence . . .

TAKING RUNWAY 23: Climb on heading 229° to intercept course 182° to cross KALAE at or above 3000 and at or below 230K, thence . . .

. . . . (transition) maintain 5000, expect filed altitude 5 minutes after departure.

ALANA TRANSITION (KALAE1.ALANA)
EELIO TRANSITION (KALAE1.EELIO)
LANAI TRANSITION (KALAE1.LNY)
LOKIE TRANSITION (KALAE1.LOKIE)

NOTE: Chart not to scale.
TERMINAL PROCEDURES

TERMINAL PROCEDURES

TAKEOFF MINIMUMS
Rwy 17, 23, 35- NA: Air Traffic.
Rwy 5: 300-1 with minimum climb of 500' per NM to 960
then minimum climb of 270' per NM to 2300.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 5: Climb on heading 049° to intercept course 139° to cross
MAULA at or above 2800 and at or below 230K, thence
. . . on (transition) maintain 5000, expect filed altitude 5 minutes after departure.

ALANA TRANSITION (MAULA1.ALANA)
EELIO TRANSITION (MAULA1.EELIO)
LANAI TRANSITION (MAULA1.LNY)
LOKIE TRANSITION (MAULA1.LOKIE)

NOTE: RNAV 1.
NOTE: GPS required.
NOTE: RADAR required.
NOTE: Chart not to scale.
RNAV (GPS) RWY 5
KOSRAE (TTK)(PTSA)

Missed Approach: Climbing left turn to 2000 direct WAVKI WP and hold.

KOSRAE RADIO
123.6 (CTAF)

Category A
LNAV MDA 460-2 450 (500-2)
CIRCLING 520-2 508 (600-2) 580-2 568 (600-2)

4 NM Holding Pattern

MIRL Rwy 5-23
REIL Rwys 5 and 23

KOSRAE, FM
Orig-C 02DEC21

05°21'N-162°58'E

PAC, 8 SEP 2022 to 3 NOV 2022
Circling not authorized southeast of Rwy 5-23. Obtain local altimeter setting on CTAF; when not received, procedure not authorized. DME/DME RNP-0.3 NA. No controlled airspace below 5500.

TERMINAL PROCEDURES

RNAV (GPS) RWY 23

KOSSRAE (TTK)(PTSA)

KOSRAE RADIO

123.6 (CTAF) 📡

APP CRS

Rwy Ldg 5752

TDZE 11

Apt Elev 12

ELEV 12

TDZE 11

Fly visual to airport, 213° 1.9 NM.

1700 CANAY

KOZRY

FIBTO

< 3.00° TCH 50

1600

4 NM Holding Pattern

03° → 1700

213°

CATEGORY

A

800-2 789 (800-2)

800-2 789 (800-2¼)

800-2½ 789 (800-2½)

LNAV MDA

800-2 788 (800-2)

800-2 788 (800-2¼)

800-2½ 788 (800-2½)

CIRCLING

800-2 788 (800-2)

800-2 788 (800-2¼)

800-2½ 788 (800-2½)

REIL Rwy 5 and 23 📡

MIRL Rwy 5-23 📡

5°21'N-162°58'E

KOSSRAE (TTK)(PTSA)
Circling RWY 21 NA at night. Autopilot coupled approach NA below 1500. When local altimeter setting not received, proceed NA, except for operators with approved weather reporting service. Circling NA for Category C southeast of RWY 3-21.

MISSING APPROACH. Climb to 1800 then climbing left turn to 3500 on heading 224° and LNY VORTAC. R-278 to GRAMY INT/ LNY VORTAC 10 DME and hold.

AWOS-3P 118.375
HCF CENTER 119.3 307.1
CTAF 122.9 0

LOCALIZER
H-LNY 117.7
Chan 124

116.1 MKK
Chan 108

MOLOKAI

ILS or LOC RWY 3

TERMINAL PROCEDURES

LOC/DME LNY
111.1
Chan 48
APP CRS 033°
Rwy Ldg 5000
TDZE 1307
Apt Elev 1308

DME required.

ALTERNATE
MISSING ARCH
FIX
OJOVU INT
LNY 12.2

LANAI (LNY)(PHNY)

ILS or LOC RWY 3

LANAI CITY, HAWAII

AL-777 (FAA)

PAC, 8 SEP 2022 to 3 NOV 2022

20°47’N-156°57’W
TERMINAL PROCEDURES

RNAP APCH.

Circling Rwy 21 NA at night. When local altimeter setting not received, procedure NA, except for operators with approved weather reporting service. Circling NA for Cat C southeast of Rwy 3-21.

MISSED APPROACH: Climbing left turn to 3300 direct GRAMY and hold.

AWOS-3P
118.375

HCF CENTER
119.3 307.1

CTAF
122.9

LANAI CITY, HAWAII
AL-777 (FAA)

PAC, 8 SEP 2022 to 3 NOV 2022

LANAI (LNY)(PHNY)

RNAV (GPS) RWY 3

LANAI CITY, HAWAII
Orig-D 12AUG21

20°47′N-156°57′W
When local altimeter not received, procedure not authorized, except for operators with approved weather reporting service. Circling Rwy 21 NA at night.

MISSING APPROACH: Climbing right turn to 2000 via LNY R-278 to GRAMY INT/LNY 10 DME and hold.

<table>
<thead>
<tr>
<th>Category</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circling</td>
<td>1840-1½</td>
<td>1900-1½</td>
<td>592 (600-1½)</td>
<td>592 (600-1½)</td>
</tr>
</tbody>
</table>

LANAI CITY, HAWAII
Amdt 8B 12AUG21

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

ILIUE, HAWAII

124

LOC/DME I-LIH
110.9
Chan 46

APP CRS 349°
Rwy Idg 6500
TDZE 96
Apt Elev 153

MISSED APPROACH: Climb to 600 then climbing right turn to 3000 on LIH VORTAC R-070. DME aircraft continue to KREEN/LIH 12 DME and hold. Non-DME aircraft continue climb to 4000 then right turn direct LIH VORTAC and hold east, left turn, 250° inbound.

ATIS
127.2

HCF CENTER
126.5 269.4

LIHUE TOWER
118.9 (CTAF) 263.1

GND CON
121.9

SEX KAUAI
115.4 SOK
Chan 101

LIH R-168

MALS

070°
070°

R-070

R-070

LOCALIZER 110.9
I-LIH
Chan 46

KREEN
LIH 12

070°
250°

SOUTH KAULI
115.4 SOK
Chan 101

4000
168° (5.5)

R-088

4000
168° (5.5)

R-088

2997

799

338

1418

Using I-LIH DME when on the localizer course.

I-LIH (PHL1)

S-LOC 35

400-1/2
304 (300-1/2)

400-3/4
304 (300-3/4)

CIRCLING
520-1
367 (400-1)

620-1/2
467 (500-1)

620-1/2
467 (500-1)

720-2
567 (600-2)

NA

LIHUE, HAWAII

Amdt 68 20JUN19

PAC, 8 SEP 2022 to 3 Nov 2022

ILS or LOC RWY 35

21*59’N-159°20’W
For uncompensated Baro-VNAN systems, procedure NA below 15°C or above 54°C.

TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

RNAV (RNP) Z RWY 21

LIHUE (LIH)(PHLI)

Hihei, Hawaii

APP CRS

- Rwys 17-35:
 - HIRL Rwy 17-35
 - RFL Rwy 17-17 and 21
 - MIRL Rwy 2-11

RNAV (RNP) Z RWY 21

- **CATEGORY A**
 - RNP 0.30 DA
 - 663-2
 - 545 (600-2)

- **CATEGORY B**
 - RNP 0.30 DA
 - 1078-4
 - 960 (1000-4)

AUTHORIZATION REQUIRED

LIHUE, HAWAII

Org-B 07/0CT21

21°59'N-159°20'W

PAC, 8 SEP 2022 to 3 NOV 2022
GPS required. For inoperative MALSR, increase RNP 0.30 visibility to 1%. For uncompensated Baro-VNAV systems, procedure NA below 14°C (57°F) or above 48°C (118°F).

MISSED APPROACH: Climbing right turn to 3000 direct KREEN and hold.

 Procedure NA for arrivals at NAPUA via V16 southeast bound.

AUTHORIZATION REQUIRED

RNP 0.30 DA: 599-1/4 503 (500-1/4)
For inoperative MALSR, increase LNAV Cat A visibility to 1 mile and Cat E to 3 miles. Circling NA west of Rwy 17-35. Circling NA at night. DME/DME RNP-0.3 NA.

MISSED APPROACH: Climbing right turn to 3000 direct KREEN WP and hold.

ATIS 127.2
HCF CENTER 126.5 269.4
LIHUE TOWER * 118.9 (CTAF) 263.1
GND CON 121.9

RNAV (GPS) Y RWY 35
LIHUE (LH)(PHLI)

LIHUE, HAWAII
Orig-D 05JUL07

PAC, 8 SEP 2022 to 3 NOV 2022
Circling NA at night. Circling NA between Rws 3-35.

MISSED APPROACH: Climbing left turn to 3000 via heading 152° and LHI VORTAC R-148 to NAGAI/12 DME and hold.

VOR/DME or TACAN RWY 21
LHUE (LHI)(PHLI)

ATIS 127.2
HCF CENTER 126.5 269.4
LHUE TOWER * 118.9 (CTAF) 0 263.1
GND CON 121.9

ELEV 153
TDZE 118
CAUTION: BE ALERT TO RUNWAY CROSSING CLEARANCES. READBACK OF ALL RUNWAY HOLDING INSTRUCTIONS IS REQUIRED.
NOTE: DME required.

NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAYS 3 and 35: Climb runway heading to 500, then climbing right turn to heading 080°, expect radar vectors to intercept LIH R-110 to BOOKE DME fix. MEA 5000.

LOST COMMUNICATIONS: If not in contact with Honolulu CERAP one minute after departure, maintain SID heading until 10 NM east of LIH VORTAC, then intercept LIH R-110 to BOOKE DME fix. MEA 5000.
TERMINAL PROCEDURES

RICHE TWO DEPARTURE

ATIS
127.2
GND CON
121.9
LIHUE TOWER*
118.9 (CTAF) 263.1
HCF CENTER
126.5 269.4

NOTE: DME required.
NOTE: Terrain heights to 2297' occur within 4.5 NM southwest of the airport.
NOTE: Chart not to scale.

DEPARTURE ROUTE DESCRIPTION

TAKEOFF RUNWAY 17: Climb runway heading to 500 feet, then climbing left turn to heading 150°, expect RADAR vectors to intercept LIH R-110 to BOOKE DME fix. MEA 5000.

TAKEOFF RUNWAY 21: Immediate climbing left turn to heading 120° until crossing LIH R-150, thence fly heading 150°, expect RADAR vectors to intercept LIH R-110 to BOOKE DME fix. MEA 5000.

LOST COMMUNICATIONS: If not in contact with Honolulu CERAP one minute after departure, maintain SID heading until 10 NM southeast of LIH VORTAC, then intercept LIH R-110 to BOOKE DME fix. MEA 5000.
RNAV (GPS) RWY 25

MAJURO ATOLL, MH

APP CRS 246°
Rwy Idg 7913
TDZE 7
Apt Elev 7

RNP APCH-GPS:

- Rwy 25 helicopter visibility reduction below ½ SM NA.
- Obtain local altimeter setting on CTAF; when not received, procedure NA. Uncontrolled airspace below 5500.
- MISSED APPROACH: Climb to 1700 direct OGEVE and hold.

MAJURO RADIO
123.6 (CTAF)

1700 OGEVE
VGSI and RNAV glidepath not coincident
(VGSI Angle 3.00/TCH 46).

IAP

1.3 NM to RW25
3.9 NM
6.9 NM

246° to RW25
246°

TCH 54

CIRCLING
520-1 513 (600-1)
520-1½ 513 (600-1½)
560-2 553 (600-2)

ELEV 7
TDZE 7

MIRL Rwy 7-25
REIL Rwy 7 and 25

MAJURO ATOLL, MH
Orig-F 14JUL22

AMATA KABUA INTL (MAJ)(PKMJ)

RNAV (GPS) RWY 25

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

MAJURO ATOLL, MH

AL-6049 [FAA]

NDB/DME MAJ 316
Chan 114 (116.7)

APP CRS 062°
Rwy Idg 7913
TDZE 7
Apt Elev 7

NDB RWY 7
AMATA KABUA INTL (MAJ)(PKMJ)

MAJURO RADIO 123.6 (CTAF)

NA
Rwy 7 helicopter visibility reduction below ¾ SM NA. Obtain local altimeter setting on CTA F, when not received, procedure NA. Uncontrolled airspace below 5500.

MISSED APPROACH: Climb to 1000 on MAJ NDB/DME bearing 062° then climbing right turn to 1300 direct MAJ NDB/DME and hold.

MAJURO ATOLL, MH

Amdt 18 31DEC20

07°04′N-171°15′E

PAC, 8 SEP 2022 to 3 NOV 2022
RNAV (GPS) RWY 6
HENDERSON FLD (MDY) (PMDY)

TERMINAL PROCEDURES

AL-2154 (FAA)

22083

PAC, 8 SEP 2022 to 3 NOV 2022

RNP APPROACH:

- No controlled airspace below 5500. When local altimeter setting not received procedure NA. Rwy 6 helicopter visibility reduction below 1/2 SM NA.

- MISSED APPROACH. Climb to 1700 direct ESOV Y WP and hold.

AWOS-3P
118.325

MIDWAY RADIO
126.20 257.8

CTAF
122.9

MIDWAY ATOLL, QM

APP CRS
Rwy Idg 7800
TDZE 12
Apt Elev 12

4 NM

HOLDING PATTERN

OWODY
EKUZY

1700
059°

5 NM

TCH 55

ELEV 12

TDZE 12

TDZE 191°

ELEV 2000

2000 257°
(134.1)

UJIXO

ESOV Y

ELEV 1700

1700 239°

059°

Rwy 06

508 (600-1)

508-1 1/2
508-2

568 (600-2)

568 (600-1 1/2)

MIRL Rwy 6-24
REIL Rwys 6 and 24

MIDWAY ATOLL, QM
Orig E 12AUG21

28°12'N-177°23'W

HENDERSON FLD (MDY) (PMDY)

RNAV (GPS) RWY 6
TERMIAL PROCEDURES

NDB RWY 6

HENDERSON FLD (MDY) (PMDY)

MIDWAY ATOLL, QM

AL-2154 [FAA]

NDB MDY

| 400 |

APP CRS

| 056° |

Rwy Idg

| 7800 |

TDZE

| 12 |

Apt Elev

| 12 |

AWOS-3P

| 118.325 |

MIDWAY RADIO

| 126.2 ♦ 257.8 |

CTAF

| 122.9 |

MDA MDA 25 NM

| 1300 |

1200 235° 055°

MDY NDB

MDY

2000

MIDWAY

ELEV 12

| D | TDZE 12 |

A

| B |

C

| D |

CATEGORY

| A |

S-6

| 560-1 |

| 548 (600-1) |

| 560-1.25 |

| 548 (600-1.25) |

| 548 (600-1.25) |

CIRCLING

| 560-1 |

| 548 (600-1) |

| 560-1.25 |

| 548 (600-1.25) |

| 568 (600-2) |

IDOCA

| 2000 |

| 117.7 |

| 225° |

MIDWAY

400 MDY

IAF

MDA

105°

235°

235°

055°

191°

2000

262° (126.2)

UJIXO

191°

177°

172°

184°

191°

69°

780°

150°

055°

to NDB

MIRL Rwy 6-24

REIL Rwy 6 and 24

HENDERSON FLD (MDY) (PMDY)

NDB RWY 6

28°12'N-177°23'W

PAC, 8 SEP 2022 to 3 NOV 2022
No controlled airspace below 5500 feet. When local altimeter setting not received, procedure NA. Rwy 24 helicopter visibility reduction below ¾ SM NA.

MISSING APPROACH: Climb to 2000, then left turn direct MDY NDB and hold.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-24</td>
<td>560-1</td>
<td>553 (600-1)</td>
<td>560-1 ½</td>
<td>560-1 ½</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>553 (600-1½)</td>
<td>553 (600-1½)</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>560-1</td>
<td>548 (600-1)</td>
<td>560-1 ½</td>
<td>580-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>548 (600-1½)</td>
<td>548 (600-2)</td>
</tr>
</tbody>
</table>
TERMINAL PROCEDURES

RNAV (GPS) RWY 23
PAGO PAGO INTL (PPG) (NSTU)

For uncompensated Baro-VNAV systems, LNAV/VNAV NA below 22°C or above 54°C. When local altimeter setting not received, procedure NA. Circling NA northwest of Rwy 5-23.

MISSING APPROACH: Climbing to 500 then climbing left turn to 4000 direct DRAWN and hold.

AWOS-3PT 127.925
FALEOLO APP CON 118.1 6.553 (HF)
CTAF 122.9
118.3

DRAWN

Procedure NA for arrivals on TUT VORTAC airway radials 318 CW 138.

ELEV 32 TDZE 9

**LNAV only.

VGSI and RNAV glidepath not coincident (VGSI Angle 3.00°/TCH 75).

Rwy 14G 9200
Apt Elev 32

Alamat 228°

500 4000 DRAWN

1.2 NM to RW23

WUTEB 3.9 NM to RW23

NOTSE

HUMTU

4 NM Holding Pattern

3700

GP 3.20°

TCH 55

HIRL Rwys 5-23 and 8-26

110°

110°

0.4 NM GANY

228° to RW23

3801 X 100

100% X 140

PAGO PAGO, AS
Orig A 08NOV18

14°20'S-170°43'W

PAC, 8 SEP 2022 to 3 NOV 2022
Circling NA northwest of Rwy 5-23.

Missed Approach: Climbing left turn to 3000 on TUT VORTAC R-180 to PITI/10 DME and hold, continue climb-in-hold to 3000.

Procedure NA for arrivals on TUT VORTAC airway radials 358 CW 118.
RNAV (RNP) Y RWY 9
POHNPÉ INTL (PNI)(PTPN)

Obtain local altimeter setting on CTAF; when not received, procedure NA.
For uncompensated Baro-VNAV systems, procedure NA below 20°C (68°F) or above 54°C (130°F). Missed approach requires RNP less than 1.0. RF required. GPS required. No controlled airspace below 5500 feet.

MISSED APPROACH: (Do not exceed 230K until WRENS) Climb to 2300 on the RNAV missed approach route to WRENS and hold.

Pohnpei Island, FM
Amdt 2A 13SEP18

06°59′N-158°13′E

PAC, 8 SEP 2022 to 3 NOV 2022
Obtain local altimeter setting on CTAF; when not received, procedure NA.
For uncompensated Baro-VNAV systems, procedure NA below 20°C (68°F)
or above 54°C (130°F). Missed approach requires RNP less than 1.0.
RF required. GPS required. No controlled airspace below 5,500 feet.

TERMINAL PROCEDURES

RNAV (RNP) Z RWY 9

POHINPEI INTL (PNI)(PTPN)

MISSING APPROACH: Do not exceed 230k until WRENS. Climb to 2300 on the RNAV missed approach route to WRENS and hold.

POHINPEI RADIO 123.6 (CTAF)

APP CRS
Rwy Idg 6600
TDZE 9
Apt Elev 9

POHINPEI ISLAND, FM
AL-6167 (FAA-O)

AUTHORIZATION REQUIRED

PAC, 8 SEP 2022 to 3 NOV 2022
Obtain local altimeter setting on CTAF; when not received, procedure NA. Circling NA south of RWY 9-27. Procedure NA at night except by prior arrangement for runway lights. DME/DME RNP-0.3 NA. No controlled airspace below 5500. Ships with maximum height of 150 feet MSL may traverse Pohnpei Channel 400 feet off approach end of runway, closing airport at times.

TERMINAL PROCEDURES

RNAV (GPS) X RWY 9

POHNPEI INTL (PNI)(PTPN)

POHNPEI RADIO

123.6 (CTAF)

PAC, 8 SEP 2022 to 3 NOV 2022
Obtain local altimeter setting on CTAF; when not received, procedure NA. Circling NA south of Rwy 9-27. Procedure NA at night except by prior arrangement for runway lights. DME required. No controlled airspace below 5300 feet. Ships with maximum height of 150 feet MSL may traverse Pohnpei Channel 400 feet off approach end of runway 9, closing airport at times.

MISSING APPROACH: Climbing right turn to 3000 on heading 120° and on PNI NDB bearing 072° to TRADD/PNI 11 DME and hold.

POHNPEI RADIO
123.8 (CTAF)
Circling NA south of Rwy 9-27. DME/DME RNP-0.3 NA. When local altimeter setting not received, use Andersen AFB altimeter setting and increase all MDA 320 feet, increase LNAV Cat C, D visibility ¾ mile, Circling Cat C, D visibility ¾ mile. VDP NA when using Andersen AFB altimeter setting.

TERMINAL PROCEDURES

RNAV (GPS) RWY 9

BENJAMIN TAI SACAN MANGLONA INTL (GRO)(PGRO)

PAC, 8 SEP 2022 to 3 NOV 2022

GUAM CENTER

120.5 263.0

CTAF

123.6

Final approach course offset 2.98°

ELEV 607

TDZE 594

REIL Rwy 9 093° to RW09

MIRL Rwy 9-27

ELEV 607

TDZE 594

ROTA ISLAND, CQ

Amdt 1A 29MAY14

RNAV (GPS) RWY 9

BENJAMIN TAI SACAN MANGLONA INTL (GRO)(PGRO)

PAC, 8 SEP 2022 to 3 NOV 2022

APP CRS 093°

Rwy Ldg 7000

Apt Elev 607

TDZE 594

A

MONIE

ZOVIK

JIRGI

IONS UW

RW09

CEPOS

TCH 45

093° to RW09

093°

7000 X 150

0.3° UP

27

7000

2900

3000

2230

653

705

3000

2230

653

705

3.00°

TOXPA

270°

ELEV 607

TDZE 594

TERMINAL PROCEDURES

RNAV (GPS) RWY 9

BENJAMIN TAI SACAN MANGLONA INTL (GRO)(PGRO)

PAC, 8 SEP 2022 to 3 NOV 2022
When local altimeter setting not received, use Andersen AFB altimeter setting and increase all MDA 320 feet. Circling NA south of Rwy 9-27.

MISSED APPROACH: Climb to 2200 then climbing left turn to 3100 direct GRO NDB and hold.

Guam Center
120.5 263.0

CTAF
123.6

Category

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-9</td>
<td>1800-1/4</td>
<td>1800-1/2</td>
<td>1800-3</td>
<td>1206 (1200-3)</td>
</tr>
<tr>
<td>CIRCLING</td>
<td>1800-1/4</td>
<td>1800-1/2</td>
<td>1800-3</td>
<td>1193 (1200-3)</td>
</tr>
</tbody>
</table>

REIL Rwy 9

MIRL Rwy 9-27

PAC, 8 SEP 2022 to 3 NOV 2022
When local altimeter setting not received, use Andersen AFB altimeter setting and increase all MDA 320 feet, increase S-27 Cat B visibility ¼ mile, Cat C, D visibility ½ mile, Circling Cat A, B visibility ¼ mile, Cat C 1 mile, Cat D ½ mile. Circling NA south of Rwy 9-27.

MISSED APPROACH: Climbing right turn to 2000 on heading 360° then continue climbing right turn to 3100 direct GRO NDB and hold.

Guam Center
- **Frequency:** 120.5 263.0

CTAF
- **Frequency:** 123.6
TERMINAL PROCEDURES

NDB RWY 25
FRANCISCO C ADA/SAIPAN INTL (GSN)(PGSN)

MISSED APPROACH: Climb to 2000 then climbing left turn to 2800 direct SN NDB and hold.

ATIS 127.2
GUAM CERAP 118.4 290.5
SAIPAN TOWER 125.7 256.9
GND CON 121.8

DME REQUIRED

LOCALIZER 109.9
I-GSN
Chan 36

SAIPAN 312 SN

SEKO
I-GSN 0.5

PIRY
I-GSN 1.9

1300 NoPT
4

HOGOS
I-GSN 6.9

IF

OPIHY
I-GSN 12.8

SN 066°

MGA SN 25 NM

3000 to ZEKUR
066° (5)

3000 to NDB
066° (21.7)

ZEKUR
I-GSN 2.9

SN

2800

2000

2800

VGSI and descent angles not coincident (VGSI Angle 3.00°/TCH 75°).

Remain within 10 NM

CATEGORY
A
B
C
D

S-25
720-1

510 (600-1)

510 (600-1%) 720-1

780-2

CIRCLING
720-1

505 (600-1)

505 (600-1%) 563 (600-2)
Circling NA north of RWY 6-24. DME required.

Missed Approach: Climb to 1600 on SN NDB bearing 070° then climbing right turn to 3000 direct SN NDB then on SN NDB bearing 246° to SHAKA/I-GSN 5 DME and hold.
TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

ATIS
127.2

SAIPAN TOWER
125.7 256.9

GND CON
121.8

JANUARY 2020
ANNUAL RATE OF CHANGE
0.1° W

TERMINAL

TWR 311

FIRE STATION

ELEV 207

ELEV 209

FIELD ELEV 214

ELEV 210

RWY 07-25
PCN 67 F/A/X/T
S-87, D-175, 2D-350, 2D/2D2-690

RWY 06-24
PCN 67 R/A/X/T

CAUTION: BE ALERT TO RUNWAY CROSSING CLEARANCES.
READBACK OF ALL RUNWAY HOLDING INSTRUCTIONS IS REQUIRED.

145°43' E

145°44' E

15°08' N

15°07' N

15°06' N

145°43' E

145°44' E

15°08' N

15°07' N

15°06' N

AIRPORT DIAGRAM
FRANCISCO C ADA/SAIPAN INTL (GSN)(PGSN)
AL-6293 (FAA)
SAIPAN ISLAND, CQ

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

RNAV (GPS) RWY 8
TINIAN INTL (TNI)(PGWT)

GUAM APP CON
118.4 290.5

SAIPAN RADIO
123.6 (CTAF)

Procedure NA for arrivals at HIRCH via W21 northeast bound.

RNAV (GPS) RWY 8
TINIAN INTL (TNI)(PGWT)

15°00’N-145°37’E

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

TERMINAL procedures for TINIAN INTL (TNI)(PGWT)

RNAV (GPS) RWY 26

Guam App Con 118.4 290.5

Saipan Radio 123.6 [CTAF]

Obtain local altimeter setting on CTAF; when not received, use Saipan altimeter setting. VDP NA when using Saipan altimeter setting.

Missed Approach: Climbing right turn to 2800 direct SN NDB and hold, continue climb-in-hold to 2800.

Category

LNAV MDA
Circling

Saipan Altimeter Setting Minimums

MIRL Rwy 8-26
Reil Rwy 8 and 26

Terminal Procedures 165

TINIAN ISLAND, CQ

AL-6848 [FAA]

22083

PAC, 8 SEP 2022 to 3 NOV 2022
Obtain local altimeter setting on CTA; when not received, use Saipan altimeter setting and increase all MDA 40 feet, and all CATs visibility 1/4 SM. Increase UYHEW fix minimums CATs C and D visibility 1/4 mile.

DME from I-GSN LOC/DME.

TERMINAL PROCEDURES

NDB-A

TINIAN INTL (TNJ)(PGWT)

SN **NDB** **APP CRS** **Rwy Idg** **TDZE** **N/A** **Apt Elev** **N/A**

<table>
<thead>
<tr>
<th>SN</th>
<th>NDB</th>
<th>APP CRS</th>
<th>Rwy Idg</th>
<th>TDZE</th>
<th>N/A</th>
<th>Apt Elev</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>216°</td>
<td>NA</td>
<td>270</td>
<td>NA</td>
<td>APT ELEV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GUAM APP CON

SAIPAN RADIO

118.4 290.5

123.6 (CTAF)

MISSED APPROACH: Climbing right turn to 2800 direct SN NDB and hold.

ELEV 270

216° from SN NDB

MIRL Rwy 8-26

REIL Rwy's 8 and 26

FAR to MAP 8 NM

<table>
<thead>
<tr>
<th>Knots</th>
<th>60 90 120 150 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min:Sec</td>
<td>8.00 5.20 4.00 3.12 2.40</td>
</tr>
</tbody>
</table>

TINIAN ISLAND, CQ

Amdt 3A

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

APP CRS: Rwy 4dg TDZE 6013
Apt Elev: 10

TRUK RADIO
123.6 (CTAF)

RNAP: Obtain local altimeter setting on CTAF; when not received, procedure NA.

Circling NA southeast of Rwy 4 22.
No controlled airspace below 2500.

MISSED APPROACH: Climbing left turn to 2500 direct DAMAY and hold.
* Missed approach requires minimum climb of 37 feet per NM to 960.

RNAV (GPS) RWY 4
CHUUK INTL (TKK) (PTKK)

RNAV (GPS) RWY 4
CHUUK INTL (TKK) (PTKK)

TERMINAL PROCEDURES

WENON ISLAND, FM
AL-2655 (FAA)

CHUUK INTL (TKK) (PTKK)

PAC, 8 SEP 2022 to 3 NOV 2022
RNAV (GPS) RWY 22
CHUUK INTL (TKK) (PTKK)

Circling NA southeast of RWY 4-22.
Obtain local altimeter setting on CTAF; when not received, procedure NA.
No controlled airspace below 5500.

MISSING APPROACH: Climbing right turn to 3000 direct DAMAY and hold.

TRUK RADIO
123.6 (CTAF)

WENO ISLAND, FM
Orig A 28/FEB/2019
07°28'S-151°51'E

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

PAC, 8 SEP 2022 to 3 NOV 2022

NGB/DME TKK
375
Chan 111 (116.4)

APP CRS
054°

Rwy Idg
TDZE
10

Apt Elev
10

6013

TRUK RADIO
123.6 (CTAF)

Obtain local altimeter setting on CTAF; when not received, procedure NA.

Circling NA southeast of Rwy 4-22. DME required.
No controlled airspace below 5500.

MISSED APPROACH: Climbing left turn to 2000 on TKK NDB/DME bearing 306° to DAMAY/TKK 10 DME and hold.
Obtain local altimeter setting on CTAF; when not received, procedure NA. Circling NA southeast of RWY 4-22. DME Required. No controlled airspace below 5500.

TERMINAL PROCEDURES

NDB RWY 22

CHUUK INTL (TKK) (PTKK)

DME REQUIRED

TRUK RADIO

123.6 (CTAF)

WENO ISLAND, FM

AL-2655 (FAA)

NDB/DME

- **TKK 375**
- **Chn 111 (116.4)**

APP CRS

- **221°**

Rwy Idg

- **6013**

TDZE

- **10**

Apt Elev

- **10**

MISSED APPROACH: Climbing right turn to 2000 on BRG-304 from TKK NDB/DME to DAMAY/TKK 10 DME and hold.

ELEV 10

TDZE 10

2000 TKK 306°

221° 5.8 NM from FAF

2300 TKK 10

ZEUB 6.5°

WIROS 2.2°

[IAF] ZEUB TKK 6.5°

[IAF] DAMAY TKK 10°

1463

810

1168

995

2300 to ZEUB 275° 041° (6.5)

922

12352

845

ELEV 10

TDZE 10

1.5 NM

4.3 NM

221° 041°

Remain within 10 NM

1900 2300

3.00° TCH 50°

S-22

- **800-1/4 790 (800-1/4)**
- **800-2/3 790 (800-2/3)**
- **800-1/4 790 (800-1/4)**

CIRCLING

- **800-1/4 790 (800-1/4)**
- **800-2/3 790 (800-2/3)**

MIRL Rwy 4-22

REIL Rwy 4 and 22

NDB RWY 22

CHUUK INTL (TKK) (PTKK)

WENO ISLAND, FM

Orig-A 28FEB19

07°28'N-151°51'E

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

Obtain local altimeter setting on CTAF; when not received, procedure not authorized. Circling NA North of RWY 7-25. DME/DME RNP-0.3 NA. No controlled airspace below 5500’.

MISSING APPROACH: Climb to 1700 direct OMOCO WP and hold.

RNAV (GPS) RWY 7

YAP INTL (T11)(PTYA)

YAP RADIO

123.6 [CTAF]

Category	**A**	**B**	**C**	**D**
LNAV MDA | 600-1 | 509 (600-1) | 600-1½ | 509 (600-1½)
CIRCLING | 600-1 | 509 (600-1) | 600-1½ | 509 (600-1½)

MIRL Rwy 7-25

REIL Rwy 7 and 25

YAP INTL (T11)(PTYA)

RNAV (GPS) RWY 7

PAC, 8 SEP 2022 to 3 NOV 2022
Circling NA north of Rwy 7-25.
Rwy 7 helicopter visibility reduction below 3/4 SM NA.
GPS required for procedure entry at BEGAC.
No controlled airspace below 5500.

MISSED APPROACH: Climbing right turn to 1700 on 254° bearing from YP NDB/DME to RAZEL/12 DME and hold.

YAP RADIO 123.6 (CTAF)
TERMINAL PROCEDURES

NDB/DME RWY 25

YAP INTL (T11)(PTYA)

TERMINAL PROCEDURES

NDB/DME

- **YP**: 317
- **Chan**: 122 (117.5)

APP CRS

- **Rwy Idg**: 6000
- **TDZE**: 90
- **Apt Elev**: 91

CIRCLING NA north of RWY 7-25.

- *No controlled airspace below 5500.*

MISSING APPROACH:

- Climbing left turn to 1800 on 057° bearing from YP NDB/DME to ADAEBE/11.1 DME and hold.

YAP RADIO

- **123.6** (CTAF)

ELEV 91

TDZE 90

1800

ADABE

- **YP**: 11.1

CECAC

- **YP**: 5.1

YP

- **199**
- **0700 x 150**

MIRL RWY 7-25

REIL RWYS 7 and 25

CATEGORY

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-25</td>
<td>1040-1/4</td>
<td>1040-1/2</td>
<td>1040-3</td>
</tr>
<tr>
<td></td>
<td>950 (1000-1/4)</td>
<td>950 (1000-1/4)</td>
<td>950 (1000-3)</td>
</tr>
</tbody>
</table>

CIRCLING

- **1040-1/4**
- **949 (1000-1/4)**

YAP ISLAND, FM

Orig-C 27JAN22

PAC, 8 SEP 2022 to 3 NOV 2022
TERMINAL PROCEDURES

YAP ISLAND, FM

YAP INTL (T11)(PTYA)

NDB RWY 7

PAC, 8 SEP 2022 to 3 NOV 2022

175

123.6 (CTAF)

MISSED APPROACH: Climbing right turn to 1800 on 180° bearing from YP NDB/DME then right turn direct YP NDB/DME and hold.

Circling NA north of Rw7-25. Rw7 helicopter visibility reduction below 3/4 SM NA. No controlled airspace below 5500 feet.

APP CRS 074°

Rwy 1dg 6000

TDZE 91

Apt Elev 91

YAP RADIO

NDB/DME YP

317

Chan 122 (117.5)

IAF YAP

317 YP

Chan 122 (117.5)

1800

YAP

1800

YP

180°

99±

MRL Rw7-25

REIL Rwys 7 and 25

CATEGORY A B C D

S-7 820-1 729 (800-1) 820-2 729 (800-2)

CIRCLING 820-1 729 (800-1) 820-2 729 (800-2) 820-2 1/4 729 (800-2 1/4)

80°30'N-138°05'E

22027

09°30'N-138°05'E

99±

5000 x 150

25

27JAN22

27JAN22

Amend 28
Circling NA north of Rwy 7-25. No controlled airspace below 5500.

MISSED APPROACH: Climb to 1800 then left turn direct YP NDB/DME and hold.

YP 317

Chan 122 (117.5)

IAP

YP 317

Chan 122 (117.5)

ELEV 91

TDZE 90

237° to NDB/DME

MIRL Rwy 7-25

REIL Rwy 7 and 25

CATEGORY

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-25</td>
<td>1080-1 1/4</td>
<td>1080-1 1/2</td>
<td>1080-3</td>
<td>990 (1000-3)</td>
</tr>
<tr>
<td></td>
<td>990 (1000-1 1/4)</td>
<td>990 (1000-1 1/2)</td>
<td>990 (1000-3)</td>
<td></td>
</tr>
<tr>
<td>CIRCLING</td>
<td>1080-1 1/4</td>
<td>1080-1 1/2</td>
<td>1080-3</td>
<td>990 (1000-3)</td>
</tr>
<tr>
<td></td>
<td>989 (1000-1 1/4)</td>
<td>989 (1000-1 1/2)</td>
<td>990 (1000-3)</td>
<td></td>
</tr>
</tbody>
</table>

09°30’N-138°05’E
INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK
A rate of climb/descent table is provided for use in planning and executing climbs or descents under known or approximate ground speed conditions. It will be especially useful for approaches when the localizer only is used for course guidance. A best speed, power, altitude combination can be programmed which will result in a stable glide rate and altitude favorable for executing a landing if minimums exist upon breakout. Care should always be exercised so that minimum descent altitude and missed approach point are not exceeded.

<table>
<thead>
<tr>
<th>ft/NM</th>
<th>%</th>
<th>GROUND SPEED (knots)</th>
<th>ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>152</td>
<td>2.50</td>
<td>150</td>
<td>230</td>
</tr>
<tr>
<td>200</td>
<td>3.29</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>210</td>
<td>3.46</td>
<td>210</td>
<td>320</td>
</tr>
<tr>
<td>220</td>
<td>3.62</td>
<td>220</td>
<td>330</td>
</tr>
<tr>
<td>230</td>
<td>3.79</td>
<td>230</td>
<td>350</td>
</tr>
<tr>
<td>240</td>
<td>3.95</td>
<td>240</td>
<td>360</td>
</tr>
<tr>
<td>250</td>
<td>4.11</td>
<td>250</td>
<td>380</td>
</tr>
<tr>
<td>260</td>
<td>4.28</td>
<td>260</td>
<td>390</td>
</tr>
<tr>
<td>270</td>
<td>4.44</td>
<td>270</td>
<td>410</td>
</tr>
<tr>
<td>280</td>
<td>4.61</td>
<td>280</td>
<td>420</td>
</tr>
<tr>
<td>290</td>
<td>4.77</td>
<td>290</td>
<td>440</td>
</tr>
<tr>
<td>300</td>
<td>4.94</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>310</td>
<td>5.10</td>
<td>310</td>
<td>470</td>
</tr>
<tr>
<td>320</td>
<td>5.27</td>
<td>320</td>
<td>480</td>
</tr>
<tr>
<td>330</td>
<td>5.43</td>
<td>330</td>
<td>500</td>
</tr>
<tr>
<td>340</td>
<td>5.60</td>
<td>340</td>
<td>510</td>
</tr>
<tr>
<td>350</td>
<td>5.76</td>
<td>350</td>
<td>530</td>
</tr>
<tr>
<td>360</td>
<td>5.92</td>
<td>360</td>
<td>540</td>
</tr>
<tr>
<td>370</td>
<td>6.09</td>
<td>370</td>
<td>560</td>
</tr>
<tr>
<td>380</td>
<td>6.25</td>
<td>380</td>
<td>570</td>
</tr>
<tr>
<td>390</td>
<td>6.42</td>
<td>390</td>
<td>590</td>
</tr>
<tr>
<td>400</td>
<td>6.58</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>450</td>
<td>7.41</td>
<td>450</td>
<td>680</td>
</tr>
<tr>
<td>500</td>
<td>8.23</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>550</td>
<td>9.05</td>
<td>550</td>
<td>830</td>
</tr>
</tbody>
</table>
I. POSITION REPORTS
 A. INSTRUMENT FLIGHT RULES (IFR) POSITION REPORT
 1. Identification
 2. Position
 3. Time
 4. Altitude/FL (Include actual altitude/FL when operating on a “VFR Conditions on Top” clearance).
 5. Type of Flight Plan (not required in IFR position reports made direct to ARTCC). State “VFR Conditions on Top” if so cleared.
 6. Next reporting point and Estimated Time of Arrival (ETA)
 7. Name only of the next succeeding reporting point along the route of flight.
 8. Remarks
 If entering ADIZ give appropriate ADIZ Position Reports listed under ADIZ Procedures.
 B. VISUAL FLIGHT RULES (VFR) POSITION REPORT
 1. Identification
 2. Position
 3. Time
 4. Altitude
 5. VFR Flight Plan
 6. Destination
 If entering ADIZ give appropriate ADIZ Position Reports listed under ADIZ Procedures.

II. CHANGE OF FLIGHT PLAN
 A. CHANGE OF ROUTE OR DESTINATION
 1. Type of Flight Plan
 2. Aircraft Identification
 3. Type of Aircraft/TD Code
 4. Estimated True Airspeed
 5. Original Destination (if applicable)
 6. Departure Point
 7. Position and Time
 8. New Route and Altitude/FL
 9. New Destination (if applicable)
 10. ETE or ETA
 11. Fuel Endurance
 12. Alternate (if required)
 13. Station where original flight plan filed.
 B. CHANGE OF ETA BY MORE THAN 30 MINUTES
 1. Aircraft Identification
 2. Position and Time
 3. “IFR (or VFR) to (destination)”
 4. “New ETA – and hours of fuel remaining”

III. FILING FLIGHT PLANS
 1. Aircraft Identification
 2. Flight Rules
 3. Type of Flight
 4. Number of Aircraft
 5. Type of Aircraft
 6. Wake Turbulence Category
 7. Aircraft Surveillance Code
 8. Departure Aerodrome
 9. Proposed Departure Time
 10. Estimated True Airspeed(ETE)
 11. Cruising Altitude/FL
 12. Route of Flight
 13. Destination Aerodrome
 14. Estimated Time Enroute (ETE)
 15. First Alternate
 16. Second Alternate
 17. Other Information
 18. Fuel Endurance
 19. Persons onboard
 20. Emergency Equipment
 21. Color of Aircraft
 22. Pilot’s Name/Contact Information

NOTE: Request available NOTAM and weather information for new route and destination.
PACIFIC PAC

8 SEP 2022 TO 3 NOV 2022